vault backup: 2023-03-17 10:17:22
This commit is contained in:
@@ -1,2 +1,3 @@
|
||||
//O zgrozo
|
||||
|
||||
// Całki
|
||||
@@ -12,14 +12,17 @@ $$\int\left(\frac{3}{x^{2}}+\frac{4}{x^{3}}\right)dx=\int\frac{3}{x^{2}}dx+\int\
|
||||
## 6
|
||||
$$\begin{gathered}
|
||||
|
||||
\int\frac{(3-x)^{2}}{x^{3}}dx=\int\frac{9-6x+x^{2}}{x^{3}}dx=\int\frac{9}{x^{3}}dx+\int\frac{-6x}{x^3}dx+\int\frac{x^{2}}{x^{3}}dx=
|
||||
\newline
|
||||
\newline
|
||||
\int\frac{(3-x)^{2}}{x^{3}}dx=\int\frac{9-6x+x^{2}}{x^{3}}dx=\int\frac{9}{x^{3}}dx+\int\frac{-6x}{x^3}dx+\int\frac{x^{2}}{x^{3}}dx\\
|
||||
=
|
||||
9\ln|x^{3}|-6\ln|x^2|+\ln|x|+C
|
||||
\end{gathered}
|
||||
$$
|
||||
## 7
|
||||
$$\int\frac{1-x^{2}}{x^{3}}dx=\int\frac{1}{x^{3}}dx+\int-\frac{x^{2}}{x^{3}}dx=\ln|x^{3}|-\ln|x|$$
|
||||
$$\int\frac{1-x^{2}}{x^{3}}dx=\int\frac{1}{x^{3}}dx+\int-\frac{x^{2}}{x^{3}}dx=\ln|x^{3}|-\ln|x|+C$$
|
||||
## 8.
|
||||
$$\begin{gather}
|
||||
\int \frac{x^{4}-4}{x^{2}+2}dx=\int \frac{(x^{2}+2)(x^{2}-2)}{x^{2}+2}dx=\int x^{2}-2dx=\frac{x^{3}}{3}-2x+C
|
||||
\end{gather}$$
|
||||
|
||||
## 9.
|
||||
$$\int x\sqrt{x}\ dx=
|
||||
@@ -28,5 +31,25 @@ $$\int x\sqrt{x}\ dx=
|
||||
$$
|
||||
\int x\sqrt[4]{x^{3}}dx = \int\sqrt[4]{x^{7}}dx=\int x^{\frac{7}{4}}dx=\frac{x^{\frac{11}{4}}}{\frac{11}{4}}+C=\frac{4x^{\frac{11}{4}}}{11}+C=\frac{8\sqrt[4]{x^{3}}}{11}+C
|
||||
$$
|
||||
## 11.
|
||||
$$
|
||||
\begin{gather}
|
||||
\int \sqrt{x}(\frac{1}{x}+x)dx=\int \frac{\sqrt{x}}{x}+x\sqrt{x}\ dx=\int x^{-\frac{1}{2}}+x^\frac{3}{2}dx=2x^\frac{1}{2}+\frac{2x^{\frac{5}{2}}}{5}+C\\
|
||||
= \frac{10x^\frac{1}{2}+2x^{\frac{5}{2}}}{5}+C
|
||||
\end{gather}
|
||||
$$
|
||||
## 12.
|
||||
$$
|
||||
\begin{gather}
|
||||
\int \sqrt{x\sqrt{x}}\ dx=\int (x^{\frac{3}{2}})^{\frac{1}{2}}dx=\int x^{\frac{3}{4}}dx=\frac{4x^{\frac{7}{4}}}{7}+C
|
||||
\end{gather}
|
||||
|
||||
$$
|
||||
## 13.
|
||||
$$
|
||||
\begin{gather}
|
||||
\int \frac{1}{\sqrt[3]{x^{2}}}dx=\int\sqrt[3]{x^{2}}^{-1}dx=\int ((x^{2})^{\frac{1}{3}})^{-1}dx=\int x^{-\frac{2}{3}}dx=3x^{\frac{1}{3}}+C
|
||||
\end{gather}
|
||||
$$
|
||||
## 18.
|
||||
$$\int (4^{x}+2^{-x})dx=\frac{4x}{\ln 4}+ \int (\frac{1}{2})^{x}dx=\frac{4^{x}}{\ln 4}+\frac{(\frac{1}{2})^{x}}{\ln \frac{1}{2}}+c$$
|
||||
Reference in New Issue
Block a user