vault backup: 2023-10-03 08:10:20

This commit is contained in:
2023-10-03 08:10:20 +02:00
parent e1e2e3e015
commit 4dfd5c0931
61 changed files with 9102 additions and 13731 deletions

View File

@@ -0,0 +1,66 @@
# Na podstawie definicji obliczyć pochodną funkcji f w podanym punkcie $x_0$.
## 1
$f(x)=2x-x^{2},gdzie\ x_0=1$
$f'(x)=2-2x$
$f'(x_{0})=0$
## 2
$f(x)=x^{2}-7x,gdzie\ x_{0}=0$
$f'(x)=2x-7$
$f'(x_{0})=-7$
## 3
$f(x)=x^{3},x_{0}=1$
$f'(x)=3x^2$
$f'(x_{0})=3$
## 4
$f(x)=-2x^{3}+x, x_{0}=-1$
$f'(x)=-6x^{2}+1$
$f'(x_{0})=-5$
## 5
$f(x)=-\sqrt{x+2},\ x_{0}=2$
$f(x)=-(x+2)^{\frac{1}{2}},\ x_{0}=2$
$f'(x)=-\frac{1}{2\sqrt{x+2}}$
$f'(x_{0})=-\frac{1}{4}$
## 6
$f(x)=\sqrt{1+2x},\ x_{0}=4$
$f(x)=(1+2x)^{\frac{1}{2}}$
$f'(x)=\cfrac{\frac{1}{2\sqrt{1+2x}}}{2}$
$f'(x_{0})=\frac{1}{3}$
## 7
$f(x)=3+2\sqrt{4x-1},\ x_{0}=2\frac{1}{2}$
$f'(x)=2\cdot \frac{1}{2\sqrt{4x-1}}\cdot 4$
$f'(x_{0})=\frac{4}{3}$
## 8
$f(x)=\frac{1}{x^{2}},\ x_{0}=1$
$f'(x)=-\frac{2}{x^3}$
$f'(x_{0})=-2$
## 9
$f(x)=\frac{2}{x^{3}},\ x_{0}=-1$
$f(x)=2(x^{-3})$
$f'(x)=-\frac{6}{x^{4}}$
$f'(x_{0})=-6$
## 10
$f(x)=\sqrt{x^{2}-1},\ x_{0}=-3$
$f'(x)=\cfrac{1}{2\sqrt{x^{2}-1}} \cdot 2x$
$f'(x_{0})=\frac{-6}{4\sqrt{2}}=\frac{-3}{2\sqrt{2}}$
## 11
$f(x)=\sqrt{2x^{2}+1},\ x_{0}=2$
$f'(x)=\cfrac{1}{2\sqrt{2x^{2}+1}} \cdot 4x$
$f'(x_{0})=\frac{4}{3}$
## 12
$f(x)=\sin{x},\ x_{0}=\frac{\pi}{2}$
$f'(x)=\cos x$
$f'(x_{0})=0$
## 13
$f(x)=\cos{x},\ x_{0}=\frac{\pi}{2}$
$f'(x)=-\sin x$
$f'(x_{0})=-1$
## 14
$f(x)=\sin{x^2},\ x_{0}=0$
$f'(x)=\cos x^{2}\cdot 2x$
$f'(x_{0})=0$
## 15
$f(x)=\sin\sqrt{x},\ x_{0}=0$
$f'(x)=\cos\sqrt{x}\cdot\frac{1}{2\sqrt{x}}$
$f'(x_{0})=1\cdot\frac{1}{0}=brak\ rozwiązania$

View File

@@ -0,0 +1,41 @@
# Wyznaczyć pochodne podanych funkcji.
## 1
$y=(3-x^{4})^{2}$
$y'=2(3-x^{4})\cdot(-4x^{3})=(6-2x^{4})\cdot(-4x^{3})=-24x^{3}+8x^{7}$
## 2
$y=1-\frac{4}{x^6}+\frac{3}{x^7}$
$y'=-4\cdot-6x^{-7}+3\cdot-7x^{-8}=\frac{24}{x^{7}}-\frac{21}{x^{8}}$
## 3
$y=\cfrac{x^{2}+4}{x}$
$y'=\cfrac{1}{x^{2}}\cdot\left(2x^{2}-(x^{2}+4)\right)=\cfrac{x^{2}-4}{x^{2}}=1-\cfrac{4}{x^2}$
## 4
$y=\cfrac{x-3}{x^{2}}$
$y'=\cfrac{1}{x^{4}}\cdot\left(x^{2}-2x^{2}+6x\right)=\cfrac{6x-x^{2}}{x^{4}}=\cfrac{6-x}{x^3}$
## 5
$y=(\sqrt[4]{x}-\frac{1}{2})^{2}$
$y=(x^{\frac{1}{4}}-\frac{1}{2})^{2}$
$y'=2(\sqrt[4]{x}-\frac{1}{2})\cdot\frac{1}{4}{x}^{-\frac{3}{4}}=2(\sqrt[4]{x}-\frac{1}{2})\cdot\frac{1}{16\sqrt{x^{3}}}=\frac{2\sqrt[4]{x}-1}{16\sqrt{x^{3}}}$
## 6
## 7
$y=\cfrac{x^{5}+x^{3}+x}{\sqrt{x}}$
$y'=\cfrac{1}{x}\left((x^{5}+x^{3}+x)\cdot\frac{1}{2\sqrt{x}}-(5x^{4}+3x^2+1)\cdot\sqrt{x}\right)$
## 8
$y=\sqrt[3]{\sqrt{x}x}$
$y'=\frac-{1}{3}$
## 9
## 10
$y=x\cos x$
$y'=\cos x \cdot x-\sin x$
## 11
$y=x^{2}\sin x + \tan x$
$y'=2x(\sin x)\cdot x^2\cos x+\frac{1}{\cos^{2}x}$
## 12
$y=\cfrac{\sin x}{x^3}$
$y'=\frac{1}{x^{6}}\cdot \left(\sin x\cdot 3x^{2}-\cos x\cdot x^{3}\right)$
$y'=\cfrac{\left(\sin x\cdot 3x^{2}-\cos x\cdot x^{3}\right)}{x^6}$
$y'=\frac{3\sin x}{x^4}-\frac{\cos x}{x^{3}}$
## 13
$y=\sqrt{x}\ln x$
$y'=-\cfrac{1}{2\sqrt{x}}\cdot \ln x + \cfrac{1}{x}\cdot\sqrt{x}$
$y'=\cfrac{\sqrt{x}}{x}-\cfrac{\ln x}{2\sqrt{x}}$