vault backup: 2023-03-10 08:18:20

This commit is contained in:
2023-03-10 08:18:20 +01:00
parent 82650694a2
commit b88ded3ac9
9 changed files with 4834 additions and 89 deletions

View File

@@ -1,14 +1,14 @@
# Aksjomaty algebry boola
1. $(\bar 0 = 1) \cap (\bar 1 = 0)$
2. $\forall x\in B (x+1=1) \cap (x \cdot 1 = x)$
3. $\forall x\in B (x+0=x) \cap (x \cdot 0 = 0)$
4. $(x + \bar x = 1) \cap (x \cdot \bar x = 0)$
5. $(x+x=x)\cap (x\cdot x = x)$
2. $(x+1=1) \cap (x \cdot 1 = x)$ - 1 elementem neutralnym dla iloczynu
3. $(x+0=x) \cap (x \cdot 0 = 0)$ - 0 elementem neutralnym dla sumy
4. $(x + \bar x = 1) \cap (x \cdot \bar x = 0)$ - Prawo negacji
5. $(x+x=x)\cap (x\cdot x = x)$ - Prawo idempotentności
6. $\bar{\bar x} = x$
7. $\forall x,y \in B\ \ (\overline{x+y}=\bar{x}\cdot \bar{y})\cap (\overline{xy}=\bar{x}+\bar{y})$ prawo de morgana
8. $(x+y = y+x) \cap (x\cdot y = y \cdot x)$
9. $x+(y+z)=(x+y)+z\cap x(yz)=(xy)z$
10. $x(y+z)=xy+xz\cap x+(yz)=x+y \cdot x+z$
7. $(\overline{x+y}=\bar{x}\cdot \bar{y})\cap (\overline{xy}=\bar{x}+\bar{y})$ - Prawo de morgana
8. $(x+y = y+x) \cap (x\cdot y = y \cdot x)$ - Prawo przemienności iloczynu/sumy
9. $x+(y+z)=(x+y)+z\cap x(yz)=(xy)z$
10. $x(y+z)=xy+xz\cap x+(yz)=x+y \cdot x+z$ - Rozdzielność iloczynu względem sumy
# Prawa Pochłaniania
1. $x+xy=x \cap x(x+y)=x$
@@ -16,3 +16,6 @@
# Prawo Wklejania
1. $(yx+\bar x=y)\cap[(y+x)(y+\bar x)=y]$
%%za a+a=a^2 ban na życie%%

View File

@@ -0,0 +1,31 @@
---
Date: [20230308101739]
---
![[ALGEBRA BOOLOWSKA]]
# Tautologie
## 1
$$\begin{gathered}
x\cdot y + \bar{y} \cdot z = (x+z)\cdot(y+\bar{x})
\\\\
P=(x+z)\cdot(y+\bar{x}){=}^{10}(x+z)\cdot y + (x+z)\cdot \bar{x}\\=^{8}y\cdot(x+z)+\bar{x}\cdot(x+z)=^{10}y\cdot x+ y \cdot z + \bar{x}\cdot x + \bar{x} \cdot z\\ =^{4}y\cdot x + y \cdot z + 0 +\bar{x}\cdot z =^{3}y\cdot x + y \cdot z + \bar{x}\cdot z\\=^{2}y\cdot x + y \cdot z \cdot 1 + \bar{x}\cdot z =^{4} y\cdot x + y\cdot z \cdot (x+\bar{x})+\bar{x}\cdot z \\=^{10}y\cdot x + y\cdot z \cdot x + y \cdot z \cdot \bar{x}+\bar{x}\cdot z =^{8} x*y+xyz+\bar{x}zy+\bar{x}z \\=^{2}xy(1+z)+\bar{x}z(y+1)=^{8}xy(z+1)+\bar{x}z(y+1)=^{2}xy\cdot1+\bar{x}z\cdot 1\\=^{2}xy+\bar{x}z = L
\end{gathered}$$
# Bramki na stykach
![[1. Algebra Boola 2023-03-08 11.11.50.excalidraw]]
## Poprzednie zadanie:
![[1. Algebra Boola 2023-03-08 11.17.37.excalidraw]]
![[1. Algebra Boola 2023-03-08 11.38.40.excalidraw]]

View File

@@ -0,0 +1,6 @@
# Ćwiczenia Overview
```ccard
type: folder_brief_live
```