vault backup: 2023-11-08 08:38:13

This commit is contained in:
2023-11-08 08:38:13 +01:00
parent b8d0669fa0
commit bd5cc8f2e5
12 changed files with 3674 additions and 44 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,838 @@
---
excalidraw-plugin: parsed
tags: [excalidraw]
---
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠==
# Text Elements
%%
# Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATL
ZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHAL
RY8RMpWdx8Q1TdIEfARcZgRmBShcZQUARm0ATm0eAAYaOiCEfQQOKGZuAG1wMFAw
MogSbghmYgSAGQplOAAxACsAQQB1AGVmGABHADYATQBZADUAaQAJdLLIWEQqgDNA
hE8qfnLMbmcAdh4kgFZBwYAWFKOADgSeAGYD2K3IGF2znh5tM4SEs727o57WJ7EF
3M7PCAUEjqbh3T5XQZ3MEfK5HWInHhHCGSBCEZTSWHwxHInio9GDTEQ6zKYLcFIQ
5hQUhsADWCAAwmx8GxSFUAMSxBCCwVzcqaXDYFnKZlCDjETnc3kSJnWZhwXCBXKi
yDLQj4fDdWC0iSSCUaQLa6pM1kITrQyR07RY4oCa1sw0wY3oQQeS0y/EccL5NBPF
0QNjq7BqV4hlL0sPS4RwACSxGDqAKAF0IatcNlU9wOEJ9RCZXLA8x00WS2GwutuL
FG3tzkdDnww4wWOwuGgPhDO6xOAA5ThiBsJdF/QYpcFhwjMAAimSg9bQywIYQhmm
EcoAosFsrkq8X8BChHBiLgV8QG4MElceLFBsDm4+IUQOCzCyf32xJavUHXfBNzDO
A2EII9ChdMAinmMp4zgsAUmg7NoNguDPgpBJLiuK4HhuFIKWdRDkLg1C4PQ+YjmS
a4m0GPZASuWJKWgpCUOeGDWMbbQ8JSJjLjOQYrgYjiwGceI7liM5W1+WIbmkyTMX
YtCuKSIErhSYFGOY4i4PE7RJOkw4zjk34jkUo5lIo1ieDORJm1iAFMTubCiNE/TD
Jkkz5PMnSrPmSiyh4QZklcvYfkk85CJYkj/LKQKwHubRTifR8UgSB5dPmTDDhSPY
LgSU5wqEhi4s4xCPgMv48vOJ9NIxLKymozEmLhDLpL2FILLKhLuN4/ijkE4TGrAd
FtBBM4TIuIietYu5EjOO5pwBckYow+IusxQSfk6zrFNmxCPKkwbBJBf5FpEmy7IS
ByjkuZi718ngDr0+bfiWrq0Qa0TgtCwjwoyp9pqUsiOIS5wcuw648L2Ai3JskLcv
oiKgeiyzQZUw6JOOyb6NBC6Rp4PZksuVIMru64jgyq4XvmELAWCikARW765pSZJk
TwyaDkGBrabKWJ2bRCleYRCdgZGySnTOXDmIRClBep/nRuJviblJD5gtZxCpcG2X
SVONKlYx6yKuuhynPM1y1uy4np1bdKARwqm7hpk2Apsq5EliG7XebBInsJz4wV22
rp1W9H5nIj2Kq9idfeEx6LJ+4PqubEzw75siXWjyA4ECSsRHCKC4PZpbbIOcyTOK
4aOPZ6S5P+EFbkK2voPr6dDauavW8u0uvlRdLH0RPiXb7+YhdHybbkbxqhbuOM21
7uenURYLDhchSdLrp0zNJH2H3eWed6p+8fkOH2Z7b/umaRZHL8fa+J+SpbzJOSbA
5384H0GzfP/b5KrZv63G0jbJCyUFIVzyl1beADzj0RuEcO6sNYE31Oog5BTEwHs3
OAcEEeFUjJzgX8Zsz5HL72wS/Aq7xXYULnnXHODJCD6GLFeBAAAFAuzAi7cCAiBe
YEB8ChCgJyfQ+g1DXnYeBLUaBAqkm9gnf2/8MKp1DhneqM0o7FAAL5bFKOUSoEgA
Dy7DBjECMQAcSHCQSYUB9DXCHEIM4AAlcYrQAD6lpFjiHQKsBA6xyCbDDDsNAzgh
IhTksjUEGkGJ3AhDGVAzgTI4PCSPWy2F7izgEVCYgMIQxqWBPeTq9shrj0gDiPEB
JewbThINO8N1oGKSpBwGkPiELlEZMyNkCoeT8mFEKJAW4JRSjLPKLkvTlTkA4GqD
UOQoCWl1PqD0XopBmh4QyN0tp7SOiylaLpCBlk+OqFySopZhABiDA2CEEYJTRgbH
GCEiZzypnTFmHM5B8w3jQNWU8YZRkVmPDWARdYvm8CkrZb42F2mQAHN2bgqR+xME
HBwEcHAxwhhkpcDJVwITziXMEa8vCNwIC3DuYg+4shzMBb8gR55LyEpDHeB8T5gR
4Tuu+CCX5vk/jDNyf8oK+EktAtIvIJcY6l1EqRKOYNWLOCSKkYEj4fZSTRqJN6i1
lpfU0dKzGelBZOlSqLO8Kr4aIWarRNqYJAQwJBjq02erqITVdgCaej8yllHlZpf4
LZNIB32u7eKsq5JfC6n8XKXVrYjUctoY6SIfii0IcxZW4kCnhWEoRASJUo2q1wu9
GWUkt7PQDeVPVXsLgh3DS5VVqlxpyUXpJDKAJjZ2vFfMcSjr8rOpOlfd1iUalbXq
btG1ybPWKsbOLatFV+11J2o0pNxbwb0x5kzN+EdRI+1rRpFI9wfZIhdm7FtgbDqQ
xwjDOGYCVbaDVnmpiH9/WHpLW27GDd1Frq4vNWNLlCrXETUWh94MT3Q3wpG9dQtD
XXGNRLZNS7Gb3FXdrOCo7vXSV9U9EdyQvVKonaauCxNcIHDnbasoudH1lHEvEfqg
s6lP3mEhpaKGfZoYXUGj9kC042qjax8yX6E3DuY1jCjC8BqlKjR2xa94NIPEVq7Z
NfUhNUZE+usTLlcJdSBI7A9xHGGgS4UXV5AC5ImWuLUxjRD+53Ukv8B8WCV5omEh
JuhJ8kGLTs4RKKOH4JOk6ulfDSdUHP0BFTH9aI/X+c84CC491gqhcoRF+8T4fJmY
C+FB4FJUh7TC+AwEGVXzpY4yfGGu0QvKICz8G4LcH7HzgXVHS/xbJupXiLEEcZTO
ZZwRrMECI4Q2a/ppVEtknznyq/3ct9VHL0WGxPBhh7qjMNYSuThQYeFrmJe+YRoj
xEyHWFIiC8zZHQXIzxeTmaaOjWUxJtT0nNOZh0XoucoKIDOOWM0QYABFO4cAWSaB
gMMOUkgrijH0M0PY7DXgQm8SsNYGxLQhMSeEmNCJwrRLyuZeJbw+JXpctObynUmw
QhyXk1Awby1hqhVWjzUhcT4j22CzHA7Z0ZfbAI6kXpoV7JtD0pU6ABQDJFEMyUTy
5Sc6qCqaZ6pNTzJzHqA0RojmmmwOaQZtZNl2lyQ6NAQsNn7MOVUH0py/nnMkACq5
YYblRlgPctnTyUxpkKLnCAuZPnfiBeUf5lzuUu4EP40Fis8pMQykz8osLOANjiR2
JF3ZUXotQIVV+/wHlzkXMuACgrSWynJQeKlzuaXlDpWwn3TLh6srIRyz82ffz8qJ
cBIVAiwK7f0/aqbrEpXEZlYddVH0WYeaCslXK+V0pFWXsm81TFgT0VAYTXv2F++F
WRlm6DXnYPMy1RemDeNnz3BnPP/jek18rq7xeuTfEFPb//bKkfdEGIoMPzm+SnWC
1MbP8eqfp7gOTrghu9SXqJ/K2hUFad20DSjOysF++ajaY8hMABg6hGys+qwshwiI
iOk28wwIV6uai0+ad686T+H+gmx+J2vaY0E0U0aMsBeBwmWaSm40+UJB2qWmM2+c
S2BcYqnmmI6IYsJqlC04fEDEqIrqyB4C04BwcGgs+UDWX8bqPsMs9WAh7WhUDO+W
cCkkQMSCfubWveSIS04UlWp27WM4eUgs/BuhToMkOWNBnBK8n0vMN0ZOIG7c02re
tYc2QiC2umFoK21ea2jIG2Ei22IqLBo05BJ+p2RB5hUGWiZQuixQ+ikAhi6AAAGh
YgAFq7gsIsjuKaDJgpBQDLAACqmA4w8RyguA3QewXi8ARyfiASlAMOuwRU40eEcI
MsqW3cgwaOoSFwXsEa2OjcmkwI+O2yIYdk0k94d4rsU4CG5SVOVSROYmtBNsEALO
bSWuHO4yXOEAPO/Slo4oAuoywukyqo4ucyCy0uOuJoayFoKxbIquhOmuyu2usuuu
JyN4ZyfgRu7uRO1ykYdysYVuMoNury9ujuCABYHuOekAbulY5etY3uDYrY4K3miK
XYIeIYOK4eyJKKo4Pi1UhEjkhUuKSeBKKeq2YY246eFKh4oqYJZ4F4+et494Re4U
26gekAH4XKqAPyFebIAqJJteIqDera8EkqyaeGwkY+aIWhAhYAopBGjOkcjhjeZG
Mp4p426kvadGPqrWf6CpgpYkypzYEpE2p2o0XGca36D4fGOBbae+cGB+UawxVMuE
gkLm1GmmYAJG4MHeDMZWW+xpoRk0FhsBBkOMp0+MmU66DpEmzpAIrpysHemqb6iE
R+FBw0IBNEt6/ue6OWI0MpeW3UO+8w8Zn0iZcEoBmZTamUQZnkuMZ0YI4ZNkL+M+
g+p+OpR6r0C0AIBwPpimXEwZ0kNZYZpUBZZGNpy+JZ2UjZBUzZqZw5YkSGWGFhok
a+IIG+C8Im6GCqjwyqEsoGBqFIo+RMLcQkbpHpsqo58G3egRR2+B1GQ5VpI5i+hs
Y5kxAsQRBB8p7p2mtebhxc+2/cIch8A+c+xhb8Rm5wskO5ACg0QIdZPw8xtm3wgW
GkJw7msWfwjk4mEF7+4WF0QMC8pwkF5m+aisz42GsWaI+h4F8FJ8a8WEf8SW4WGU
M4GkAccpX8OMIIxkPajWHWMsa8PWcCmIKWHUih5m2EjY3cfEv6K8UmwU6Is+Nc7q
f+Le9urALCLhHCP5Ve/C5QQi3hBgm2ki/hf51pj5++K+jUyZwRd5n5kRd2AicREA
zgxAVwC4rQ3QC4zgLIRiAAKgkEYFcHUMwLEM4OoA6ODhUZDt7oErUaEilMkILIiD
7KcFTOlO0YkuJk6E6cCJcHCB8KcAMWrvCvNClArI7GUpTpUjTs+A0QvLHhhQaW0W
GEsXSFcRyGsX0rzkrgIjsSMmSvsegKLjMhLicUso8ecQrusvcTaDcerqgHccCpsm
cd6M8X6IbsbiGF8bchbr8Y8v8S8nbu8nmCCaCpyQbunhtRyTysCrCUMdjulk+Eic
iqHk9ZHliQ2D7NugxKSFkgYoSQgAyoBLyWKGShSVntSWGHnoDYNsys+Clgirypyt
CQInytydpTXuUHXpBCZW2U3rFLOc4GWbuhWb2hfpaiJfmfeWJGvrcGKeVaJtQQGe
EVTWEo+bTeptmT9HbKTI7BTKiM2q2aRtTWzaSBzfWYhBcONBTN8JFMzYLeDETeAZ
zaxK2FlY5I6fxX5ATSejcDGT2YhNOF8EJChYllrVTc+miK+i+WADVbDHVUlSHLzI
MGmS1JfhPkuR3KiKcKbURu6W3h/pGWLOMY1Ret8IkK2AvILM5JGrAbfrTZrE7aHf
NA8IVJko5KPL8LHWgerA+PldbYtAZMVGnUJlTGcChF+ZjT+QKZ5nWVNPhahbZhNs
aj7Y1jOBvA+E0eIUoX1mmtZuofApHdFiVp5rzIJNupcGoVwfCZ3FgVwSQilOQgJT
fKLTurPTJc0cxA8OFAgboQ4X7U4epWwotoXO4UDZ4byutgZb4cQDtjIhmNBKgdeh
rHnd3gXSnUzCZCXZnREWAFEWUDERUA9qMCkPEX5UuOMHsK9s4M0O0LuDANMDAJoA
gCA+UUsBIFUdDhCLDmEg8NLNhJ/fgz7Olc4K7NRHeJiETM1vGqGNkoMbwC/kBrDH
YQIhUtTvCpOUBYpbsi1Rrm1QNRsf0nzqScMoLmMoqCLlMsNccVLmNZ6HLhcd1R0i
rnQwtUow8XI08b6K8RclCZtabt8TtUTgngItbgdbIkCR8idcja7mSpdWdTdQBJkk
3FCq9SiagHsK45iWij4kqpJHdBpL9bEf9YDanqSaDZntjVdZ7hAFDQBDDYyanU1S
jUjRDSjX+GjR4TpXnPyQEQlH/mxNrQw7hG/peSek2cBTZfvYqWJBbVJDVtbRbQOe
dJWbOfk406Gc05U6eSRMKdnAwVXQEfXJzBGqodfghfzbcItKjN3p7TdLhExGysrR
Ku3BXQIM4UfVpZkxjayZfWItfbfTToFH/u03jJ0/KTdnZdEfdlUHANYp0BQGqCyM
sBYuyEYsoBYuMMsHA50PYqg5UVDjFVg3UV1IXY2CdETK2N3MQ5FjGhHTdOiICHDY
VYTr9EjADLLdhZVWw2gCcE6OksSEw5izw/NXwx1RIJsQMtsSI3sWS4NZI0cVqDIz
LhoxNYrpaJ0jNSo06G1ctcclo+dTo+mDQ+UGbj8UY38UmGYxmBY8daCVE+CRAJCd
SgyLdagJ2T7JvmzsHj2ETmiQItq1Hj4k+FfkJBcIExUME8SefT1eE5SpE/Y7nrSd
DYXiypJq7KXuyQ66yek1a1kxAFjVSffdU/ky3lU7qW032V5KZIWh+d0xhC/rrc5p
QUGpG8ZNG4HMrLmYRiNPsDxMJHmWbfLVxG+beTm/6fBcrI+HThiJiJTEs69OzJkq
SGCGGonbG/7dlObM+LzCCFJN3OLa9NRN8ANogXJE2mXbOai2FCjA3e5EtDxIRGZF
umM5W4jNO4DLO7KgCF8JM0+K7GO6Xau39MjBu4RXpPIvHAxBcM27+ke2izO2e0+m
WqGl2XGOTr7XG52/ZN24CECDLATO5OeXaZWyVd20bAOygSW+uZO6B6lNJoQXHRgb
eoWpW120+L+32wB1xM+xWrYaQZO2hz23+/24QQUhpFpCuwR9++h72/+xBwLGR9/p
Rz/WG3nAMzjeAgBbZJw8vCfE0fzaRYuVBXDdZktGRbZgiI+I+D+qJc/MtJZsFHlE
fMYXDd+oXsp0pVPkqu8O7cQkhw/gxeArjsgicIs/R+zECM+CcHGHW+Z+NMFDpzlT
cCRyvP8HCGQnxCplh/3P8IUiLM6S51/L5A8AW5QnxYRPm0gvzeZ3vapes64UwT4q
Eyjbs4ZX4btgEbZNR0R5h/R5/nWhRzZjnLdlcw5Q9s0AAFLtDKDuLJjLDjCaApCt
A8AWLLBQD9CYCSBNdGJ/NRXVFBICLYOTSfA7T3h6wfDyXEMPT2dMXHTBRaEsmQh0
NFl2nYjTE05ojJDe3ohyRJs0aLEtKs6kviPkuCOKOQC9WiP8NDUMuS5hiLLMsrLy
5sttWzU7I8vjUrX8sCL+jvG6OfH6PbUJKCwSvPK27mNHVO6pM2MXUfFevVCqtjs1
Tdy3CeMNiLcGvvVoD5SORwikwEn4oA2+vbMQBkl7gROBvw+xMF4MmuvPgLwevWPe
uV5bMQgBvV1C0hvJo63kylu9Ms0rcWU/RFNnox0E2C/jkCxgYiwQbifc8Ju8/60f
6MeFeFusdC1HQvr1OXlwg8QEukhfV1ldMdtka1NW2Xl/AGT3BKqnBDYzlU35ObeM
xMR2Z7fG+6p41wQywvycXGZxjMdFtYyRt1OZwW/J3FTH6DQ73u/VOa+W3a9J2F2F
SR/vBD59Otn+vsdBvPyGRNhTObvmYUwR1CTTNcHq1AhPj1Jd3L2aH3x2+acUgTS8
aGc4KR32a4SOZKHKHNhX5L0BYPjhTeRmQt8GTcHKGHnR/0IrMzZqXzaaWJfo1eEi
JX1bY33GXZ+m/B/m9gJv0R8u+p8tkXO/32UGIPaSCYDtCtDTIwAWJGJQDNDLAUD4
D6BnDtApDuLAi9foMAs1FAsdGDQ8RRayfXKNhASBTdDgBkYzNhA0jCYPGYYAnHNS
nYGEZww7ZAlixmK6wZYfdBYsSzZwctuktLARl1Spa7F+qhAm7rMkZb3dTin3VZJN
UuLTVriXLXZPgIOS0C9cLxAVn9yFZbVzcwPYxuUFMbg9pWkPKxtDwhK2M4e11DpK
q3oi2QhISIDHhHjcZ9h0SyKQ1reBOBQwUBBPZPDyWtYg1ySFPZVpDSdZxMXWz4RH
PcEZ7iDBEPrfQX63Z65Nm8/PQPssyD6eQQ+GiD9ibxqZb8E+ObQDMU0JZ0F1e4MM
3gEPcgRDQ+Pgj3mRgl7W0aaoteDu2ziFiQL8Y+XvplhNIxoFISCD4GPWzIL4GY5D
OmvW2yjTo0sUXCAsUJ5js0UhKcKqOpjGIk1UhsfDIT3105Tpq2VQ2zjH11IQwFee
tZNkmVNL5D5B9NX/KJEVpZkWmVNHnsMONKhtP2ZQJIWUPo7C0Sh5lCOMrHnLjohO
h0PYduXw7m0oOIwvSPqV5iqlZ4sBQOj8AyRG8c2CQ0ISsLOyM1qKvZash00eGwEc
OFmHuOcNowYYtITne8ATFgIq8shh+M4fbzcEoFIRXQj/GMNbATCihs5fLuRyhGcZ
chb8FEYULmH0EM+jBE+r+Q37gIyY78VIM5287PwsBFFRyAe3KFZYVMgsOtARWwpZ
ZXIbmFur1iRCKohCGnVurPm+CDZuK7FV1jOB0IN9GwlgyUfX1bp8ieYSnavnJ1Jh
7RUQYhWQiTD+DMoUBYouBG3WpjW9BRvWHUWlCMIN9DRtCTulqPthEwuoGok0QaOF
ETgq+tomUXWhMjyjxRsor0fqKIofAvoHBR9uAlMgnRTmjw2LkwkPoJcSRi/C+vpT
2ar8DmARDEUxz74CxkRBQ6cGiMJF/0Sg1zCQBYlaApBJAQ4boEkSOCMAoGhAJIrk
WwDKBNA4wZoEIC/6+If+A3bYG8HkTmQYBSCNNI8DDwCIEk7aEKLHmuAyx7h26MEM
izmrNhkgqfFitagYroCacCIKWrcEHLcNDuyxRge1RO7c4zuJAvqunmu70tKBd3AR
A915bPcpqi1fZG9w1zcs9xvLDgWtTeKXVhWkAUVoYxB57VJWwgt5Pd0sZyt4eSrJ
ngjwAhF9oBqPNQXCjQAuRPGGg7HkTH7L0Qkmf1QniE2BoXdbWlJEwbSjME09Yajc
fKHq10opN5WXJYnmzxyYcc8mrgsISxhxGkNNRxpQYVhD4iK8WyTErGHcJ+DTiaRb
aBYW7zaEDDicn0UNH53YknNay4I7WrBzKpMi/BXwiMfJIF7xA9Y2AqNP4JiFiTca
8QkKDEjjAKCICaqDsgmSzgs13gV6K4bZDRDAgpSWbOUsmkEhXoeCBvImJGOLbXkU
y/QgyekM+AWoNa3WbIUlBSipVEWjk2EbxL0hIIEqeolUYWSJBIh3gpICysPmaiGF
UBxpV2DGkfDfAZwsMDKQTXinmicpvaNyXGDFgMR0oIdfSRrzKnZT/RpZIKa1BCl0
Jh88QZ3hTWyGIgr0N0Ntq5K9iIgQQJwR2okNVgmRMQg0qyXCLIyS1apz4YstbXyi
JAfqlwByGqQanhC466sREfMG7gxo2+vdTqQTSQy50tYl5B8DxHJDMRt6afFmhbQY
hakRoTEJ0JpB8ya1Yh1TDoePjGaiRYYPEAjEPC3HKw18kkMzr2hBAmF8oAcJsDcM
nbTpLMtCDMWUF37J99+k/StsjOBCozshi06WqexOHzS+01bFGdpLVSaSZYSOAUQ1
hxnky8ZlMz2AoisxKJKapM/LuFBOBR9eONkVRDVG347SuIcxA4QHS+Aa1qYExF4b
4OjSxooEbFLiNLy1jBiSZsUwshZJWmXk/pWIqYSrXTJu0A+6spUnm1lKycNZ70Sy
TLLSHiRTSjopKWUGeE/SBhVbTaFTEobeSzUBszIT/m1podU656EaEBxKks0L2PsA
GAE0BGZiWJCsjjNzzjjhzuyUcsmW7IplnTQ5CcmwveF9K9pXZtSNOUV3T6sdM+iX
Dno20XgIgEQEdISVlk1jGs+Z5mJaC5Am7HCZmq8GhAHFQwj9UqElTotJQkL6F1MF
oxrK7BuidRME/dcyERCwGd8b41qa4ECBk4j8CKYpaThaWXklQm+S8/uneCvbboCE
5swQt6mnBEwD5y82GAJCXGKyb4qIFOvvLx7Lzim9wG6PiIb63BN82Y+ml/EKjjY/
gr8xrNnMQTxov5cCASaVXA6advMvkGztF0gU2dJIMCsyQAk6iTQQu1QpkRZxnAgJ
zIYtOBYiGwiuwM6dnYpFWkIWwLXOfucYf/J3gV8HIf8nMcQvITzdGRjCtEIP0Wit
CaF5IPGKiMYXvB95fYjBbWn4WkhBFxC0NJ3CVp2c5BjGDAsuPUJ/y8IP8UyRgqjE
H05+x9bhKfWS66VUu+zdfoFAhiZyI5OcxqHnOchMz05tlY/qV1P5VBJg9AT8JoGw
B7A4AFACgF82IBDhvssQYYDAGTBg4wwEOb/tFV/7BI3g0kXvLtGaLNhWiQ48oCOI
RYQJp8eUFyPlGfCzjuAqtYKaMVCkLFWGMxMOgHE3xR0rYRLHca1T3H8MKWQjHqtS
zIEHjoA54kakyxvEKN2WyjIqk+JYFLV2Bq1bRtwJNwCIfx/A0HgCUOrATZWp1aQR
INh7/d4eIKdHtui9F1o0eCEr8QwGUFeNo8ohO6PCwOC6CiSDgknmTwzx2tKeMymJ
kRPpIkT1YlwGwVRN5T2D4xfJevM4J6bN49ZSZSNk0x+GtMohuk7wcLI+XP5OJjDQ
ObJkBWS90h3szoUbNeFx8vB0K3NvhlC7Aq9UUK62odl4gXzt0R5GKQipPQ3tD5NT
ZTGymHny9OJxKwzmJHMW+QrMVi42bSpfzUrshEMNdv9AfZqyEVTsp4dTPszNhlRi
MlmjrIOkLTPghEO6IiGlnOyAphNWFf9LRliQMZ04LGY9NJms0ShkMzhbKkt5wg4Q
Mot0QSt8GaqeY2qpBYdG96jSGI0q+qbUOYVQyc2eq63oavlHD4FVWI9yM6oNWV83
VBNaIUCq9XEx9VNvI1f5KFoX5YYuCp1SFGqmnAw16KyDr5Osoxr3J8sBNb8JDROw
wQ0k3tEkljV8R41fq+YcYqTnsTJoyUWSJCwflq9Xh27YdvnxDHKqC16a4taTJchf
BO8QvXVcGpdW+ruKysGyZKuYgNxopeaq1VvXGkyrE16M8PrHiQLlqRpk621UNNnI
Vq7wRmVlReiSRLqxpK6uaUyqqkeSNIXkmuc2rTVFqB1a6ltQcBPVnMvVdkDdeiC3
UzqwAR6/Nnes9l6R11Val9eXX6alzBmCORyc3WH7qEtCMZMENOU06DQx8SIS4OyL
bmqFCInRSDByKFjvw8+GLJDaNLRAfBs2J8fvFFj8yxZu4M0rqDWtI3ixDM8i2LLc
AMLcZ+5UFX4BGldHejmNp8NclKNswvzGI9s20VaI7oyEVO9wH+KkuE0N9Fo/NLrL
PLk6CRB6JGxrMLAOBNzZNI9bHKQm7i0bGsQkUkBOC03Xy5OPMGGOwSY03wceMsJB
KxUPk4IbVGFCjWZqM3LSEsvUrgr5yBAKFl568JiAyrRkYb3ZUG1uZQi1j5Qh0LfN
RcCni7z84xrPBMcvyTFGUMuHHd9besN41ykkj639WfMLZH98xADRykcCmAwBlAHA
CgP0BBJWB+gdQOoIMHZB7B4iHAHrhFTQbtjQlnYyANgxUwGQHR7nO6IZkRDENHw8
0OkdIVhgwCMJkABAbCCSAaotZ+S9bvCm5p4iGFFVXAcdwmSHjiB/OE8ULnIHNLpG
1A2Rk93aWvdmBH3Fll931w/d1qHxDZSMstz/iwegJUQaBMuXgTbBiy2MPuQQQI19
WWy7gBcCQlY9UAfGxeMxEOVE9jlaecnucoImOt6U5g2nqRUIgM9EaZeWwajRonCo
3l9ElwZ8sKacTE2fPWVCJNLaUrcoROpXm2l5XJpeVc7TWcB3F4M7u1h0GYa0Np3M
7kVpO6DiKo9VirRomK62e0L50AzWIzkuOQTTWHRqIyEs0YlLLtWS6Ra6w0jrWgHE
ZoydiukofUJAUVQBZ6cAIe6tdo+zRduupoYLIN1M7LZc2oOGbv116SvlKiW3WHCB
VxlOd1tSqCHHN327ZyRw8To0M9126Xd6ImEbnL13O6dh6IuOs/SukXoPdaccPQet
eFx7mhUi0PU7qFmodqOlsd9jboD0J6hdupImCTGW0671ojM3zbWt8FhzFEimn6Lj
Ir2yqhaC8DmFMyxx0dc59e/GY3oSiYCO+SqulQXMr1pDe9zMpMlHsumrqqaI+tTa
+WTXvk4yjbOsniW/hnrRV8K3wc3sySSQ29gXEnUMNEkL6W92+wqO3qeFu6C9AU6v
WzNr1btz93emyEts/nKSSGd+19Vl0Gnq1o6HI5lYTu4nGq0hA+yxUqo4kU6/94a3
qPxIeFnqQDMExYeAbF2my0V9Oq3YzvNqC7t1bOmoaVJF3AHMDuYjVeLppXyrXaYB
WYfAcOiEG2VeBgkdYuLnEitFpIo5gjnw0Owu54G6VYVIUoNyc+eEG6MPC4Y7xFoa
mKaKMz81Oh8I88lCiGJwQw0JwnZJ0cvRliaREQEWB2a3x7oOYxDKh6BMuy0MPBpx
ICE3XJw+h/BVNeh7voqv7omHvUeSxrAVEjqeriEI8B6DFiU0Od9pRhkevPLFLbyu
CGm72q5p01SaN4gRr+N7VshggpKNm5KLvMGj3zHNI9IELtHRCKDoj9EJaCfLtoJG
j5fBOqlEfPkELHIZsgoyFl5ipHz5uR9KPkZ3kD5vgzfSeeJUMzVGuCW6PKO1G01f
wHwOWNLARrgSVypNxR/uvM2Yi1tyFnRpirlWl19H9Yoxi1XJ0QK/AyjlG2zM6gUh
icxZQpafhn1n4aVNFy2M+n6z0rxa0ua/JLWSJRX5tejcUg2aQfZ0/08thY9ALkV3
BYBYgFXZoAkAsSDB9AmACxLEGaBHAKuQgfQBwB2DNb/mbW2Koknoz5SqYO3XeZNz
DAjiFUgCUEKCGJoTaluXSkHfNEQTCRr2X6qYlVVhCv7mkrSSpfeNWKNKal53UnvU
tPF7bDiF40ao93kb0DaTrAx8fNWfGUn3QfS77jD0FZDKRWBjUZY9vGUQ9JlUPR5d
drmVw6vccTeFufHeDkSYU/21EkDu8YfUJwzcb2hDuwkGDcJRg2HRBOp43Ki8chhE
A8vh6Y6od2OyJoFAYn47edrtKNQ0JTaqS5JNBhFVLvdMeCQyak70yau53Jy4+vy9
SZzPQNlsfl3wiM0ysoPbrZJYM9EaaVjk0rlhVe2DtZ2djKSA1Eeqffyp75cTd93y
zwRntnLzsNIG664P7yVV5nE9vgodbzBR3Tr10UZwdZls3XZbY9IvEpvfolotrL1D
sxKL2ZCH9mvevayGWCy32EF2z16i9bbxakoE5zVNH9V2eWPC8wVwQiFWus7PPruz
k+Lc6L25WrMS5JIsuQlVwimdpzhJ8BDTJnCQsxFMGuNP4wQ0F85OqQC4EPIqkjyf
gU8xepPP7EIgALfh4SFvPXn91ipQh6AdkZwS8G6mBmtI8JEUEpGNzfRtztJ3KNDG
5mssR1Z0ZmPoLpF0+Mo0+caxPy0l1CgzJvTujyaF1SlU8zsY2YL9YtKXRMScZTHJ
a9z1a7I0EOPN0FctJ/WIg9gQBXBnjKQZMPEUICEAjARwSQPEUwBsB7m7CboNMB4B
tiHcHYqEyQyfALtT1XqELo5Cm5ghko6HPiM0VwhyDMlvYFlQebW7EmEJQ7SZn0U3
xU6Du5J3hlUsIE0njxV3Rk2LmZOtLaBt4hgbya2TYnVGrodRisjfEDLPxvAsVn+I
TD7VAJMraU2BMkHzLLln2onAVGbarK4JbjcHQVe2U+McIz86zPqax02tjT+E009c
sZRI6NWgkTE2yQgm2mXlmNOiWSKdP40npUZxiQivrM69X9kKss5EJ8mUZ59/q/qz
ZE73aTRrx0JFdbU32cwW2PMBszbKGsXpjLL4CywHLF59WxrektVI5e46NgXLPEwa
zNZ1iFnBpQq//bHyJW2WEYx7dFqX1fUwH4jJKpASe2w0ftTz9BvTEBqJjAIhKYhv
+WCB2iEXpRFmcOPdYb53wsUHR4hCgPTbLyVTjRWs/3QxvwbJ6jWD0QE242CHJJOa
gQ/YS2PFzGLsYhgx1Z2ZsX9FZxwxU9bQsYQOVv1968V0ub/1HjEAQYOMBv65ELEz
iZQEYDgBCAfKkgfEOyAXDxEKAoVdSxg0BbhLQkDaTtWPnuAtF5NU3MOjVC3qVzeY
mSKy2qzsgvgdTSh1ywUppzv6HIOXU/WSaO6eXqTR47bb5caUUCWlh21k1UGCscnO
ltxHk2oxtCvj+lXAuK4Dz4EPakrAE57VKbEEymYe5YKQdE2ysPwoFtkNZbwHNaY8
tTIYejOhzHqVW7T1VmHbVdsFmmGrJEpitJGtOXL2rLFzqzju6t47erGq56cVhpVb
WPrIZ40rxb7MfXI1yukaGvsLlPTlZ86o0oQWVlGo5e/qu2aoalJSRZdQdbuArqem
QHBJGwiSbhzfYHXW7e0ww3WdTRFJ1dPOve9nTPhg2wpc1xlYNf3uX3D8R99NCUku
smrF7IxcrFAc3tkqXUP5jcl6gn2rTED2bcnbAdEltmjrQetAxA+RVJmzmLtWiMbu
APd3yDcECGSwrzXIPX1vujY/BFgLKznyw1lAyHM5mpn2MHdqe7L0DLojA6rsOiwz
SdTkrf76I0WU2q5nH3n7D13Uo/VzTR622/u+PeWfNrj6E67usPYI8JF0Gs+TBpyM
UlAG5rxmp8CI+9ZPhlZz48cJc4IVkPl8FDH58yPdEcPL1K4vEPGxIQ7p8VbDEhfc
kAf7pCV2jhmkelIQXiwb2NN8PzloMPhqGSYOp04PIc8edx/gKI34Bo5wT/QnIXFP
x+lDHwqG2J0oiUX6L8febrHXBK1D/FelfxR5zWCeck9aMzytDha4pt2k8edFc0mT
kxxTbi4xjotNN+u3TeOMM276gUbhznREfd5k9XuyB9YoeNlcqg0yaYEcHZD9AAAQ
pgASBQA2AuRO4GwFiDtAKA3QHyvWHBN9dMGyt6EyCx7adYIW/W+JS8F2CpRkgj4N
zo7DkoHL4BdDecfVmznWaVxlt7gDDP7GIUEZ+3NbY7Y21ECtiLtmlm7f21UCrxNA
i7XQJe57iuTEV9nHyf+cxXQ7t2+K7+IEGQAhBMdq8SBOmXRN3t8dhU6CnjhTn07x
V6bZqZ2WNhaj5DQu7TdJ54TwaaLq5QjuIkWnR5bOVqxjueU1P/WXVx083dLh/3WU
LTi9Bmc2tj3ECE9kaDy9j5NOL7/O2B38tDn+z9yzDOCDTvF4pTy0LN1B2ZVtLEOm
VJDIydAgi46qDaKrgh+ObbRrn9zSrpNZNY13WTd1NqiaZeRFcLyCTcZhFU7wCPI2
kyCI9fTbPMg8QA45MHMxsKL12jeFKDttJ66AVOw+hksL2MxCkj4Nip+ZjVSG+9dh
uxjrEQmQJGJkX7GpbU9Wrkpn1vrJzEmj6xOr3XWuL0Cb1Kv2VZEbXY+KWzyfetYi
208IjYdEMIUn0arU3y01bvW69gxkAmqCisieRNX1rJmf1nMp8EOAsbuZ1ImTNrVL
XZyqdZQNabTQ1QT9W4A7m2cnsSqp6cyiMVPjRforYFW7LD7/Yu5+rlwHpx5e1aUK
mOIROoiQbuAQmbCSlcIVZRa0LKXKOpgoi8nguekzZAP7Hqwz2ibTA0GuBYNDiy9t
OmFZTEpwqzmUfZ5kH9jSRSiOp9K/0ZuEobT6SFO8qkSrmzGUOClQ/mECzMPYIjYT
tfwRixpX3K2WXB9HqT9+HaiC3UI/Pu8OGmR7tDxNeOzE7EISGNhcWYde+C0HeFua
CNct2zbO3Ld9V3LIUj8aZJMZwM0G9N5/CpJZN/0/2VjNBn13qiTd2QZ0menkzocx
SRAslgieDPMRuDqXotlie1XR/SR4Bo45lw8oS+C8qRrMuJU16Kju8J5+g8qd8Kr4
G/TfHOC0I7HaRvdQbees3zJoyy+oy0YIQUWVtACnSBkaM/jGxtCzHV3JxuCpf0HA
ComLt19dvzcvg8cN9/MK9805jI9DKI9G1flfBCAef6IPZK8fzA3ACr6p1GAVCKhI
OFtLzV5wTEXexRCt+TVH6/Jub478heE/qIsfBxvzX7+adD3YDeAFX0H4FG4s+1f6
euCSi6N8FUMihPo3jUWNoW80K4wbdA4Jt+fi45fUyQ1b5gtZHa6hFuOP8yj3i9Hf
L4E45Ph18AXev3v0inmSgqtT/v543qMC0zXQ0RaOkUWvY9opwmCI9FyYgxQdnClg
c/TlnrtXG4Eu2KhLPTkouMBZBCB2EwwPYPQFaBkAOAPlXIsyE6BDgwTQSyKiEv65
aXlC0saSEgnwoYEBtSJ3Z4bWnxyRu4CLU9UbZFcseKcNztAEa+4vmy3LDt0K9Uud
vCNSBDJr50yY9u/OjtbJwF6FeBcB3IrQd/k1dsFODK9Gwy0U5HZMbJWEX5QYEq9p
RcZX5TkE0FClUWifms76p3gJiezs7KNRFcSaOazxR6CSXpysGva0uXl2icFgqQg5
BrvRM67Bxknk4Nx0gr2X01zyC9NcMDXX7kbFP8PQFgrnW7Gf9u9kKFfhsAVenuB/
8tv1EO43TKzu+5B4+giXOL7rXsdaDSB0xiK91t0yvyYQwxHjH0mZ35+tvWG6C1jq
Pn+3XT6R7GqzB3O35XzWCdoBuA08JSkhdP1/Hm2XTq3aL/Utp6jT7HzX/t4Tb5Hz
z3pqo8euDZbp1b2JCHdKPB/muuoVd+f2VnF2mHrGyB71J/uSVJDSNwVJjdkgq34k
vl67AFcvVCziJkR3WTDnsYnJ1Rw89lL9ArZ/VdexnMnVOdX5dtpWTDY9t1FVQACU
A/1TQDIA2yWgD8POWkk8cAudk/9o3IqR/92PLGGICt2UgMKkdRazwBspHABAGxLM
OGQ3tNOSL0C8EFLj1pFOvLL128AsRuE0N1Ca82H80nZjQepGNNI0rcG0Dx1tEpvE
+XCd5A/NkMgY2dJxlFmfMpxvhIjX4FE0Z9VvnvdE4VPyUI/zJaBAslNEyCKN/POT
h7kmjCCz8MaZKN18MdNG6DiMX1L+EeAA4ORQB9koTwN/hQjOBHc1L4MLUgsMjL6n
C95jWo3NJYLVeEs59NYDyn5E/bYwh9NmGPyX4fCOH0ZsDscthwcP/fKTID6AtHxK
5ubbpwkB8ACrliBSAGAGYBBgKAHcRJgcyAoBcAO4EGdNAV7BgBMAZoAVtNLP/gyp
JaJaFzQN8eiHQptnCABHEhIPNhsIXzahgF95EQ+EiN7A3ZBF9UAGt2X8IOSX13Fp
fLy1l86leX121Fffy2V8LfP52O12TDpQfEztF8V19OBWUyFNDfEUyB4TfQQTN8Jl
RFymUIJVFwWVVWKcEWM9THFzQAKQPFyNY8SYaB+piXJlwD9jBOqypdzTFlG/Rt0S
PwVZo/HRWyZG7VlwT8J4EBy4l5/ZAys9K/QlX30eA4N1P9B7DnQr8sVAe2jUyQvE
OtpC/OVUpDkfOmEfJzVfA3VcGQ8/zftHSWhwFdL3O7z9dr7cf3VdfTc/x+tvgWAJ
ZphQ5SSv0/YRTUN1aIM/2UkVrHTiXgX7E/1dMGvOaGn8b7Qd1JNNQ6WD70h9YNip
l9QmfyppBPdL0LItQwUNeEpPcyDTNshMf0NCuHN1yVVHQl/yVCKGfFV7QPQmSGxk
KzRfzSkKA7a0X1lQr0NfU8pKNxGJvvXOWMUZQ1ww7NK1dc2yNEoR/Wa9B1JIGKV7
RLJ0Jg2bMUII9SZXFlbA6jJEDHNCYNDmz1d7JlUNohoIDzUCroLPVbAylSgNQcpp
cdGQtTFH6EM8UhTNnZgwRE9Rm8bILsMmFZyE90koopCD0HCzPJSW39dSO5ziwHJC
cIqghw1kNeF3pPrS+kLHScPAVuw2clRAvgbmG3RcuXOWXCZwgKVwgr0ZxnRAI0b/
UR9zPFcN8FsIcaH3kD4At3o8HzLDywcJVPGU7lxA03U91iPevx91qIaMNz1qoACJ
X9qmG6GSAGIPDWsDsoIj2uASPBTzAAfgRIAfNkkaFQw9EIwCPNpNIBKgnA7wv1wQ
iPwvByCk74BeCkwRQ4iKQjX1KjBjRG+cORj1QIlBWwiIIrhzyhxoM20jke7aiJwj
OZdKBjQUdY0WHMsIkiOD14gAJ3E8y9VOSSdaI6NCwVbgSw1j0BQp0IClGwOyHoxI
vHU24MKhcvS705IjSPOAtI+R3XQXQ1SKFowWXwIwQtAj/Bw5hufSLIIxxcmHG863
MfWY8AHZsMg5u3PiBQEOFGr1GgwPOhzIIkgXoRG8kRGOTIdzI3qA3RQo/yKsoprc
2lSBEgKTBLDA5XcngJ9XWiKSicsXHlLDRIbB0ICbQyqDYJcEIJ2HMCo4/2qZmIXs
JSi+7aYRwMooriGyjaovKM+FX3Hvyr9momCjqjy/GkM8jXyEKMDFivWVATM5IwaN
mNn9eKPNdOZGKKGiwop9HADBRYKN7wJojYXEh4AiVxmjxo6GzLYNoh10YC7PMkXZ
hHJeGQ3gEgneHskgQFEDS07OMwP947wQ0Sjl64VCW98azGyPCw7oFDULU/dKChdg
66NzGkNYgwbDRsRAuGSYhOvOsPMx+sGMiucRA2WDC8TXTkWZhRpOCM5Fa2eLHc8O
NCKDlFgnYvV4Ihzd0XegBIIm27p0JIemXlxiXzGMC0EZw3JjsbfE0/cxVHBGC5Bj
KekkxWwLIzSMfHD6CCwfA+iFSUsUZo0awggzzUgt5NU1iFiPAk4Hs0sLNzVFh40Z
wI8DdoQ+BCC5YxCOiCQvG1QRiYghBEvl0oF1yM1kKJQ1hi3NSoxgsQvQoxC4rjIz
UtjWYsi2O9hKA2JHpWjR2L5iXY4L0fkHYj2KGMsFBWEVjAg+GW/RZY+2LqM15HWI
CZU6UzSQsfMaeFViQ4yOP9ib5KSDwROYx+WTjKGCIOdiIUdqEli+jDeFyxrYrOO6
N8NN2ORBUqYOM6NIveQUTiMvCDHjwTYsiwItho0bym9mSM7wq8hvMhR69K1TuNIs
v4eejIRNwkbBQETFed2UoGLFIOYs0guLQyDEtBpwfpZo1aPdR1opeynEEAzmxsUS
guxQkAkiaYCHAKuCgCMAfKZYGuBugYgF+x6AZMDOBdwBIG6BnEboMhNegjVyHYzW
AhWbMwQjn1CRMkPFibdcqZqyRwjbUaLstsWNVl1DmcCpQ8stgp2y205fHbTEZXnd
2wO0VfL21ZY7xQOyYFwrLX1Bc2BcFxDtbgg3wB4jfR4N2oo7J7VeCLfJFw+CbfCC
WytBITWEigM7XZHd8fEf3DBFTvcEOnji7M5VLsKXEP3iZ5vFaDpdKJG00ZdOEhuw
dM0hLnhHC3/GlTlcqaIBIbJf9ef1/dUVQuJ7wlEg/SLl7cQG2YJ7PeiM/cXIPrWp
jn4WyARAvReT0SDMQmfkniYtMRNqdZ49LnnjcMGRMyxMHDeK6dt49AG6AOAQYHiI
OudhGYBMAXADOAFwegFyJBnK4H6B2gWIBaAH4+nyfj3gOyFLppCFDQrhDLT+MSQd
0L11SAlUbQnPhFuKbTQAjpdOhcNh6VcQbAW/eXT4dmqCBJJYXndYm8sPnBpQQTvn
S8WODVfb2xO0gXS4NCtg7AU1mU7gwhIeCI7EhNN9o7chJ1BKE2wU+CsrVVij5TgA
wjd8XfbFz+0MSZCSJwhKfsgDwOElENJcarclyp56rUPyR0nHX9kRDqJIu3ETA2dE
PcEkgyM2gdaQythstEYgpipph7NlXFc2IgKQUT28Ezxmi59IkIfItdO/1PCLI0hz
jj3IUaIhFVdAOFo8dI03n/8goqjg/0Kw7/WxVOPU+yZVe9Isw/CohEPXDDNXas10
MPk/FITCn1cXyIMpozFNeEy3fE3YCc2Wv06gxIs0MA9vac6JGiXEl/3ogr0SwKKQ
1yUM2oNkI29z7C245716jUfX/2+TroDaXHCpSMM3U9kIjSARwDbW8wF0Hk/qLAAb
pF3g3xz3P0hz8mVYpIU1jEiciPM+7ZWDXDPpHNzrN9U14SBlLjUGVci7k+My9h7U
zcUdSrEljm0SmA/uEiRT4Xzkxj/yOtHuAS+d808xuYQqG+owwk+AwoPZGuXnh8FF
uR+jC+WqGBBG1dDVXgfIxvhB8kNO2gVjFggrAVgw46I0dJ35Lsh/NesSuUYdcYqz
iLCL4Fxzk5o2fKnhseKH6jJBm0iQlb0f7atOch9HJmKiUWoBeHejBCNsHUj77EeX
+gRYY1OHSZ4cFD7TaHDIwTU64MHzWZKnSHyS5ofI4wcTTjJxPmA7UkGTdTbzFSmK
CCxUoMGpMAHylewkiUYBpBBgCgAXAjAPKBIBlABcHaAWQV7DiTlnQbl2A6yAaSRA
uYQyCg1Rg5E1+hiQAhX+FCkOAVoZsTa23p5GwnPWASMBU6zTSKcZ5ygTXnRpNgTX
bFpKV8kE9pJQT0AH23ODOWTBJ6UorI5Ahd8EsOyISRk8VnFMpWICTeC0rN7WoSPt
VViG0TgbbyUEMSWEA2VmEuEjI01MOEB2TofSEJNMy7I5P4SR4awkW56XCl2RDofO
PybsMQ3B3RFrrD/Dk8vTZCOr9FE3KHBVKwpPWeTkwuRPbUwE0shuNyyLAzeSGo7a
z+SsU0zJNTdM7c30zZZNTOXMS/TaMk88/X8KdTHXazMCFRzHcyel8U9yHeSX/cSG
EcX6bdWDl8Q1+zMjt1KFP9UlPUm3hTNhZdFVcYszaz2i1o6LMlSNeKlIFS/M3kJB
S81ULI+td/a4yN04Va0PT9k/EfxzZSsh3WJDKspSNojXMsjAazJ2QzPf8OsqB3ai
m/VnUKzVM9VKiy9XZzw+s27bzKfQKHVWQ1TPrSnVDMcgwqJ1DyQy8ghgVIsLNKz3
IaUKMCM2G/2ixisp4RDDm2bmCYiisjUPbwjsrmFbZE9A6PPNgbA2AKFX4BAJ3gm0
KPlaIKmGSgQRl3XVI4DyqZClV4wuTQh61B0zwzvNkYJ+3fIT4TEH3UkNQSGbc8IN
DSQ0rNTJEE5AYqzS6MK+JNICxcNEYzUShYAjFYNJsrLA7pBY/NKgobgBCwCCxKTz
2T5h5XkQU46ZATQtJ/eG0RU5InUhF8d3RdVn7U/HFbzXhWcmG1rT1HXnPDghKAXJ
4pG4KQjkCRNbLH+80jEdNnTQc9QyECDQrggVydOJXK8xi4pAwAQpMMGObg6Pcp2j
ENFVIN2TN0lfjnjDmA7ElD6OEhkuy1rU7PuNBLQBnsVXsdxG6BOgBcCHBxgV7FwA
jEXAHZBkwUgEwBBgdxDgBugWIA/SlbL9I6JmIcaERAJsNhQMsgM3YEPIEqIBDvhF
zApLoZADBvSWCFtfJE3R0xMLA2CKTdBP3F0MnYLFB6TfYOwzDg3DJ1ATgtXzQTtf
DBP9tSMnX1wT+kxVhu1/uO7WN9Rk54PGTJTRjLjt0rOUxoS2M6qPVhoBDO1+0g8L
ZXWTn1K8IixVTC1iwkqrQwRLsDk4PwkyLBOqkfAwBNHU9Za7URN2TFMm5M94PU3P
1qyicn/Ucy+LMLImyp0i/1syrrW/JfzTVJz1QN7kvrMDUOU1RJckKzDsij5zbBbO
mzEcrlOZDsvKIQgKZ7M0OgKBAttAqiNU5UijCxUgbJIMLM+8LSFzQ/yPlSLE+B1H
wqs7IUFTwwkAsSTuI6GU5TyC96FAKqCkaEZS+PUFISg0C0+AwLEMYERekmUmiLwc
9ydLOtomC5lM5lAowANYghC3gvRE7ImhFH1lXLYQEKNUth3g9DcnWDfzqPGFOUKU
s4zNoMvUw6KYMD4XOkPC7bXXNuguDJ6IMgA8B5zHUV4V+N004aLUU/pfeYx01zzE
htDeiXCzEDfZe0lwsthHoYlLC4JSPgjndzC5n1xUVQ4wjHou4AEQiL+YwwmCKYiz
L2GMkCsHKbRPQlQt4DpIB6O0iQi3+B25UQQFMbZ82U6ElF/825JUzkg1dNNyN02H
0tzUxGj15ko5YzPR8t4zHwkAKATQGvThgBAAsQ3FCZ2aAzgFkHYR8AKAC8UjgfAC
jywlGPOhMbgQSKVRjoMCyhYMkoxWJgo6aqDSUyogX0WikpcpN7Bu/frPKBUM8vJl
8YE3YLgSzxHDJ+c8MtpTODTtEjPO1orPBP18qM4ZIStYXCAHhcJkjS3eDpkljIpd
srFqAcl+sDOyIZirJfLhA3OFBR99LWS5KNNt8oP2iY+E/fP1jUQc5KeUWeOxOZc0
QyRLT9V/ezMdk1C3EpWzS3czOJpLMjVXKzd0mgupCJUm1zgL8w9V2Ztkw20JjIJv
LTK8yX8zkLl1g6dvxpSSQ693CjY0KhXi8VEy43/cUIrgt49hCplQukuXYzyJKsHL
go8jEzG1I308S1/0AKJdeYUJD53dUtFLNSm/L/zkVHrINLG/Uop8yasw0vd0As5z
OxLnTCR10K7svRJBtjvWaTblvIXmCthRDBRTOjeCEHPBsM4A+Hjwx4/cPyFVyDsI
ARuYP4EmYGCwQw/hEKDhw4D/2KLhTVBDXItd4Cio2jcwfqEyIjKPSzIoaKIisiVo
RTOC0LvMe+S0xgLcy1It9D4UsuFMMAQNVSejl02bEqKp4s3JqLHEq3IxVhssxWtK
SZZopPTPE/1n6AKuHymmBNAfQBSA6gXAH6AtAIwAq5CACgHPThACYva0IATrTWlz
gFuSQRAvLWyWK2wUflPRUlIMsgzygQpJysl7bkMXDygZYMWzyldyzqS0MhpKryLu
GvPgT1iRBMuLG8jpNQSQrcvM18O8sFweLu837meLvxAfNozSEiUxEFY7K3wVYZk5
O0R5ssXNGFhgSpZLWTgdAiBs4aoYTMNM9kuEouUESvfJOT0oGeFRK0mdEvPyWXW0
ok8CQjRMBTxSzcgXIlszazayryHFS3Rwitkp7L10cFOAdgC+Ut4qIouOPBkldfkq
BEmK/YRYrIIrguYrv9Y0ulLZKqSu/1O7IgsNlgDT5JYK2o00q51tS1UMes9K2T3c
yvkxqT8zwHS0tmzNsnTKhgnMyqKL87SnQrZ5vUkxNdFppTKNTL0pZT1rKJZEWEbd
IciMshZwMlT1pE0y3bgzLMPCbhdJgyuHJ25N6cMpGwVDEBC4qbC8HOKR/KhKr/MT
oPyKEVnSLQXZzvKltmmh7pKNPJs7kipxNy2y6ovptMgndPayzK6CF7tSw9xOdzHK
DgH0ASiZMBZAjgTAEIAFwZxFUsEgZxCOBSASYBZAEgQZ1XKtLLWHENoYRt0SSYKK
bhBZ/odTETgAuc1nPK4CVKHcqwwZYJgyaOYjiElS8yBKOLtgk4ury9g98okYLitp
O/L8MgFxbzsEgCvuLyMx4oGSCE/vOITIKsZLISR8ihO+KKXBCoVYU7cbz9h34NCq
BDxwVoneAjI3Cr9ZRMnhMOSYQiu2HhlCeLHIrdKM/IUzqKo0Icr38iysPwNM/T17
8cS6pgpKgUtLMyi1KxBzZVLhQ0iwCrM5rIMc9IFApf8fkvVDpLpK2cJoLIU02RVI
n3ZCJZqz9Ogq7J4igWqUqgtQ8zn9NEqmkFrAZKkukSNSjuy2KYPeM25quILLLFrJ
KiWqErY0GT01rMMZSptdlaglVuyGDC8y8krNJ2LvM15fxj9KFFFyFZR/47ysnEX5
VwObjaRWPHyoWQuzk+iIUHB0nhaLMQsblDgMQmQzYsFkT6wAY9NN/gUQaNw+EiKF
CgDgdy0NKyw4cxiHWNAYlZQ1QSCyhHpTmyqmyqd9jdsuqraijjllqH6Y2psoBy/L
QewpnZMGGBXsaYGIBKuJoOcRJnHyiIAHwHygmrFnOn0/SuxL+IrULMAEB7YqYUWD
XzElS4ErV0JeFiirTyybRzzcwrCmF8C8tVlutBVCAPttNgk6ugT3nTDM+c68qRi/
KHcJvM6Sbi7pLuKrgrvL183qsCvDAIKxK2+roKhjL+qmM63wnzWMuJnw15CJojny
tWRfMwqrYfDVhqTlMl3hKFWREpOSR1d1mPy2rTGrwqL8mivNL13LrPTMh/ePn2Kn
0FUqQamshBxzrWsj/Kz9dSu2Nd1BK2VEFq1KhULWiKG2chty81HLNQK1a1TwwaOn
KsLErGQ1YVGyf8uzLIakyOYg/h/C2gr6jD8OyNfZrwjVMn9ZrHoTmiySnhuEbICa
RqXiFSzciVKFGt2ViicCqqI1rmI9pwyzqmDd0XYdPN8MD09GwvRPCO9RRp2iQOKc
OS8pG9RpkaVw02qBsnS+91Jg5mFnVpFF6IQwBybCk6MuA2FPtMXFUQMxLHTYyoqp
XcQikWHkpoNGwtUxH4MryEU8NPD0hiAsaHJLcVjYdiB9lHKCneB/gUYnBi0cr6D0
166QpqsxeIKQ2jrMNVNJHcnMK80Mhl68inagpIEpvTTHfF3iQQfGpdKNz1FXYyqK
8K83IS1OyzLnMazFSoQcaCRaup5tYgdhF3BYgCgEGdzwQYEv49QOAF3AWQfADHKE
QSaqfi4jaCMhsfNb6kWLhxXZ1QIOYmszkoXLeeqxMUWcsLgyZXIkxASPQq7PWsUM
2pLwFNkY4r3rTirDI/LWklk2uL1ff8p6Ty8vpJvqe8j8Shdw7V4rGV6M1KzHzmMj
+r+LEeOClO9LOYEqua+M6pGqb92Rbl98jlf3zAbCKiBuIrYabfSdp0a5ngyYMSxB
pxraKh8PFqsc6nQJKZKrWsZayMRqsCzSZcuoqhDKoVKYaP8RFJ5DaG9ho5C46O13
pTSG+Rrr1LG8N0laaS2PT2LWG3ksZr+dW8KuFB47ULSFuWjCEI4MOU/TIIAUnUv7
8uVRQoiymIn6DZsB/Tmsv11sssOy49WviKZU9q1FNKYxmpRsz0UUu5pUq4st/Vub
UPB+yLyfG/9SJFnK1gh8iIoFVLjTpYP3GGCamnJq8l8m7JoTq5Ie6WzS0KXLCEgo
62HOgFvqNNtswHYMdG1rfogLThy2WjDQ2d/GxDXIo0lCjUgL82mtrvgy2kwn3MmK
KttibysXny/o7OLqGfAlDK6LSjSq6/PKremyqv6aOy7dK7Kv2T1v9bLKH1uaqMfF
3IkBhgBcEGBBnSYCHB+gUYAq4EgUYHZBJAIwAQA9gZQGGBNATQDKJe61rXiSVnQm
hnAGiRKjKMHomcSWLqo2Fh8dQBCcCVQjbXPP0iEMq20taTWnATeb1tZ8rOrXyi6v
OL684+uvEgrLpI19gW1vJwTgKsFtArIW6jOha6MlKxe1kXeCt+KvguJktrF2FZIX
zuMjU1BLgdBFhQFGINnDxbIdAlv2TwGmkiRrjk0lrqZ581kmETT8yiqxqsS2luQb
eOrBuMqtK5TNeSTSwLDvzNK5CLmywDIexJKt3OUJ81zszgs3JJSyQpZo2alAkqTu
S3LPBgZSyLKjQ52/1UFbry7KBGaOXWGFlKfoP1qbCwsuhrtbp26zvGz2SohudavW
jVKsqlwmxp3D5E/lpM7PO4cNwj+C7au6EZIvPN2EGWnB1GgDOmWvC7WHKLvtKnKv
QuYDiQN80zqkcNKBaFu4kLDGl4M4TkzSXo/2q8xyQK2J8C+NezH3dSNFNr88p0oW
AH5ZIHkXJzKuydKz98c7QisDqurzG+BwY+rvMwGIAOFSd2u9HJDrDa2LC9RmCzTj
1zOug3NrL86mxOqcMSgZvYt4fJToNqi25XkDbdZJ3IXbHKIQCHBdwO4HcQaucYGm
BBnDgE0A4AOoGTARbegAq4LEZwG2br2z6KOx0lcb3ukjmhJV2c8I2JEr5Aytciua
NqpzuudV6vattsSzA4qA76kzqi+bzqs4r8sj6m6pPqfygjNg6gWy+t6Trg98UGSP
qmjMfqh8n6pgrR8uCteJE7TK0QrHGf3iP8hIYEt4yAGnOzBRK+DviKsHKaEro6CK
230gaWOx3xasOOqP3gbHBbGvsq6W1isIa0GpP2OhM/Du0JrS/Q6zF66s8yXlL0G8
Xr6kuG6zwtKxAjkqzE0w0XrV6iGre1Jwd7OyoCl8mNpxMbtOtlynabbB1pMqerHV
vtbaOR1ps8HSs2uBti8SFDzqAq1uEb4SqkbBU1W4BJp9qR1BcK1Fi+Apujr7Rdrz
s5LNGs298jG3XPk13ZGsqbLumyLVbLbE4urqcaqyds2Mbej/RB6IzXLXAByIRYjg
Bw8qIBXBuAfRGgAcQbICqBLwUgC/AtgBgEIAEAeZrfLqlZYHb6O+0UAgBsAEQAlx
kwFcH0BDQfZE+bKWBvp77SAPvoH7BnVvth7buLvvH7J+rIGaBT638sUZu+3vrmR+
+rICH7iM9vLH6N+3IC37B+3pWvqbgyAAX7N+gfucRe8ngWKB1+ifsv6sgIxAfqBB
e/sX6gcTgHv48wPUGB59+h/sP6B+5oE/7ugaS1Ks/+9/vmdMAKAHaAiAErSqBggN
rnn6D+qACP7DQDUGgGJ+tgAoAcQXAGw7wBx/v0BdwOUHaBMB7AZCAHsDUGZBOxao
GwBmQfUHiJ7kO6AgRtHFURoG6B/AGGAslCASm9UgZOuBgG+owDYADAcvo7ACAIQC
NZj0t/oIHr+xFvBa5QLvulASAEAYPbrGd4tIASAAagAZBnLkAew+QdkASB9B/Qea
AugiEGcQEAZQFYQGk3cAXBrB6weMGIASQYv7cgHfrZBn+qAG7A4dEuTMBhAZgAsR
1B4gGUGfEB1i+LsgMwblAmACCGUARBgRByBcATQGCBQUJkHEGIQbACIA4AbgCSGS
eDgGOoMh0gGSHTcIQCgAPwHxEyGdEcAD/oEe0kWABtEEAG0QgAA=
```
%%

View File

@@ -0,0 +1,776 @@
---
excalidraw-plugin: parsed
tags: [excalidraw]
---
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠==
# Text Elements
%%
# Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATL
ZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHAL
RY8RMpWdx8Q1TdIEfARcZgRmBShcZQUARm0ATm0eAAYaOiCEfQQOKGZuAG1wMFAw
MogSbghsAHVsABkAEX19AAkANnoaoQoAWQBJRHwAfV6edLLIWEQqgDNAhE8qfnLM
bmceWIBWbS2ADgBmdtiAdj2U9oAWA8v2g5XIGHWeA4Pki632/c+E1/aHiAUEjqbg
vbTtY7tTYpX4nLYAyQIQjKaTcA7xLaXPZ7Hh7WI8eHFSDWZTBbgpAHMKCkNgAawQ
AGE2Pg2KQqgBiWIILlciblTS4bC05Q0oQcYhMllsiTU6zMOC4QK5PmQWaEfD4ADK
sDJEkkgo0gRVECpNPpNWBkm4sUp1LpCG1MF16EEHmNopRHHC+TQNqJEDYCuwaiev
pSFP9IuEcH6xB9qAKAF0AfNcNlY9wOEINQDReKvcx41mc/6wotuHsTrFXucUn7Jg
wmKxOKCTgDGCx2BwAHKcMTWrFbX4fQkNwjMRqZKDltCzAhhAGaYTigCiwWyuSL2f
wAKEcGIuGnxGt7QSeK2PCrOMxAKIHFpme3t7YQpnqDn+AX/rgbEIm8KRJgEUkxlB
GIFgCkgHJoBwEgW8CTXO0KQHFs2xQqOIE8O0yQJBcJwJL8sRXBcBJQQ8QGAWAOwE
niZxVjCBxwuRYCXuCKQXjwtwMXCZEwZRJzaNiJypCcyH4hhkwHCkyQ3LiNyXMJXz
obxIGwZMSSpKcOI8FhnwEsx6K7FiOJ4qRIHQaplGxJc2iXEOewEbhLzXExlFSTJl
xyZcCm6cp5nkWpZSnNoKTYmeCQEmc4nMbiiSxAkJwHJWp5bOiZmTBZkyBWA8XaFe
dZwlF+mUaxSEcVxsJbCpWUlTw2g3PRp6vEOjESWUnGJCcxwoQSBy4X5GUBbV9UKb
EFy/ChlUxW8EJEdClXVWU2U6SNjUTS1rngStDUpF1lxEXWelVf5fFbfEyEEhFJyJ
S5bU5XstnIT5uHIf16VlJlS1WUk+WnFsRV3dZtn2U1ewKUp71gJ9FHgbED2XMhWx
PacCTtJWgPSahUJfHsp7WSRx2DadIHBaFDkOZFpl3QJQkiWJkPQ9lpNhRT/1U8x2
H/VhUIoShaEM0NsM7Nd3n4+hHO7IpPOpahR2LTDJNvNZqV7P9nlw5tIGc1LLwy/z
hMfYLJOY3NqNJe0V6a5M1H7NZeLrQtJ2WeBGkFdpvnFeBNt4li8XNY7RPOyBNOVn
TaV3d7dt+5NrXy9lkd0WNU2UZHvsO7HTs1bD9XK3C8WpdFKfJLbaf+xngdZyBzjx
OidnWQd+sS1zEK63zcuZ194FgSBkHmUSn0QHAgSFiI4SFAPrD6Nmh4IAACsPzCj9
w1JCAgt6hFATItGoR6z7+ypoIF1c53X+1IY3gHa9zreywNUPFAAvispTlJUEgABo
UAAmrMvSxEYtJsAAHkOArlwFsAAarEfQphWgADFjTTHEOgeYCBFjkGWP6NYaANi7
XBKjfau085gzuACUMqBq54kSH1OEeFqy42EgCIExAQS+mFicUWCNxb+kRMiVEvoB
JkwSPsDhKRnKtQBCSZ03cBB2npJKVkHIeTciQIuQUwo8wSmZIomU5AODykVDkKAx
o1QakdM6KQBol62jNAgC0LCrS+hsfacxyCTTMkqLmYQnpvTWgBIGQUIZrThgBFGP
csZ4xJhTOQdMx40DFh3P6TRBYtwlgbGWOJqB85FQSNWdsTYuxoj2PkzsnBewcH7G
gVIWxPhiIvG2f045JzBCPNwD8X4GxLjFMQNcWQjGpMSQ2PcB5Wm+lPOeS88ULYyI
gHeB88Snz+hZK+TJ7S17fn3nkACQdJgyNAnHSix9a6oTPodbh2djneQttdG45dDb
E0mEc5W9dz5HRiuCHguEHIoUxGjHiHcFa7IMokRCiN9YHK7sxVO9sy7/Irp3EmJ9
/qoWEeHJuikIqViTncqGRtrbF1oli7igMlZ2R+TpCqOLGaUSvqeXE9Fk6wxsnZcK
BExG3LhfcnZZQQ7CV2vTQG7DOEEwhcHQSod+VoqsoIsKIiEbiM5bih5ZRXZaR0h7
QGMqHJyvZbdUVkwxq7FNncBhGtNUhVlZWeVHKDZKu5TlE2UIzamvRsxbYeUOH7S4
QLZVOV4iHFCmNX5rqrJCq9SKgFTN/VSTxOxW4IamXA1ZU5G1+qgqkpVmrTYCaSbM
vso5XVVK8Xpu0MrJKWazVuozeSziSEA5csrga6tqsOHZqtkFaNga41/NtdS2GzaK
05vUu8P6pxQpnj1ZGqyA7W2Vv4uKvlolw5ppyjO9WQ6yi0sxQyotvrYidtjcG9tV
ECVR3ToqvtJMD1Bvjce+CoK253ztY2jtgkY03p7e8p146fm3t7cWh1RqnUmotnOr
aHyvm/BqX+ldhqsafJA5bQGSKrnXRuru+1qqzjqohshy5tw0OpqnS7Ed2GdK4eYr
3eFgKeULrDoXLuK6E5EsZT3Fd96jhgreZRKjDaEUGqRXnVFDG2PEZ7pRldTzT4N2
44xsTjy6rfrkqkKVcnqPZT2RBKC/cARD29KPSJE9CBT3wDPee+mjRoBXushspmqR
b30DvRYe8/zGMPoBDYEGxGHBUyJ/ZGVH7P0aZkiAvQagABVNAAC0ADijQACCrR+h
sAAIqmaEL8fAKX2KIPgG41B6DKDGmwRQ9Vpa9KXAIS8YSeT/TkOrq8eqdYCLXGq1
JBSTDLTWh+nDAqbM/NSCRCiNzvBsKfN2mNbyEUwPlCkcgmZpp7QKOlOgTkKjeRqK
FGE8Uy2qiyn0QqJUxiUzqi1DqNx+psCGlUaWORdiutONu7Y1xVRXSeKSd4yQKS/H
+gCcGWAwSZlhJjHGce0S0wIAzAstJ5Rkm+Oh4M8oGTuC4WEklByDSGwdmbFwMZJS
cflMqVk8m1xhHxQBE0qcb41mLmXD09c/THww8gMMmemSiJnm2JeVKXxLi3j/PM1A
CTnwrLafOGz5Qfyucib6zTvHn38bKJHU4Ft+ue0Rfh656GL0AaBiyw42JQMbq0/J
oKYaxbq92bBrVmKcOyZAtC6OG1/17pt7iO35yxW00leJa3FqKbuwo1ZR1CHzZIb9
0I935H7dNtLWSmpFK60YZfTlN3geY9BTzcmwtOu93wyep5JKuI/Nm49cKp9l6DX5
/ki8EyJf7qPRQsjfCPbYPV+8rX4vlv2p1QamNJqMdc/2tyr9Qq7MSo2QSpCf6VYs
STvU99PKvW/oAximN1Hk3Kttpd8Pnr5wV/j62uvibKQpvb+0/CweC8DNg9LMZ6e0
5zMj0s6gaz697MGEczIZzmztkGr331qvoBFhDhCfmfmav3IFsUC/JAG/OgAAFKzC
xDMAADS3YQgww78mAP8s8AAqrSM4N2O/LSEPLljMBIAVksMVs8IagcASKTjCJiAl
LVg2PVvhI9EhBjjiLPmDJ1g4taNet2kOoNnwiNgjHlEjEweiMRJ7sSBwKSPNs4vI
toithAGtsosaAKFtportronKIdkYiYqdi9nqFYkaEofdvwY9ukndiYS6B4seF4n4
F9vDlkv4kGEEmGEDqKCDoZuDrEkzojpAHDoWIEZSGgpkurPsOWpjuUNjoUlUnwP6
PEWUn2MgqkARJxDUgRBThOFTqsuLrTt0r0huFsgjruPuGzieJzvUkwWePzveGEUs
i+PSAUZ+BLpAFLv+O5vanLrBkii8mct3mAFJicjJhXgBhxkhI+sMc4FMVxhMb6vM
TMXdM4Mrl1GPr7qbiejRPuhsWrqsVuvStikPinrSuiIcM7sxM4LyvRj6varcT7rM
VhpsPFBbjvini8furkt6qsXBnNLzLfPcZ8aRq8T8QTNcY8UulsQviRppDVm8b8dc
UcSxsnormAF8YiRCYcjXM8qcuCtsf8dLCsRJoSSHoCRfF7KeirpscCeifum+l2ke
ndCiTuqcfSYIcycxFCQKrBpyX+lWnHqlJxKJNCXSTRoBvBhSRnqnv7rbtHosZhqC
d8e8TFOdHQQXIlHXuKdlDyapphAJGVInsSiuucXDIPndO5OItWAQmDGiRKWaZcax
pJNJNaX1FcHaRejpt+NfsPLfukvfqZo/r6cgm/kshvA5k5sQC5gfAmJfJLFhBcRa
eRFabcjaR6fPvfGUE/NAcFlUPULEBQAcPUAkAAFYJAMhAICi4BwCYD7TKCYApYPg
AhIJzALBUEAglbVzHDgjJTcEKRgxkxkLPArSnhiKOSVj4SfKxGQDMKsKoAoS2QRT
XBERIk8JDb8ILl1S4yvDCTnCXg2qSLyHSIWG6GrbKIbb+haEaJ05nnQB6IGJHZGF
mLnZVCXbXbGiLbmgPZuFPYuKvkSBvaOEfbOHfbWHlB/aeFZIhKRg+ERL+nlCpgBH
lEgX5iuHC6lgRHBJoZ1jHD44JGoCeT4WpEVLIIBrCJ2n1ivx5EtLU6FFXl04lGM4
oVDKVGjJZLjJc5dQ6RiINGC4YW2YtF0XtG6abIy69GkmwlVy4l2RCYFzDHy6V5lC
jFyX6kCaa6EaZkK4SmebfrfLQafpFy7GlwWmSaKbjb6Vck0oJktzSmKkp66UWVQZ
WWwwh44x4y/GSYyXIr5xqUlploJ61omnbEqUoryWAxZ64y/BgxdTtxSWTDmVOQ+Y
Cpuo246oKofHomOnJlWTt7CQvR9QRrxX+VkoilPGAwAEH4wl8YSnuoizhqyHtTqk
EhQgEjfD1raVMyVW0kVVL7749UrodRT7VgXipRvSAx5XjavRFU1XLTH5XAISqm5W
N7PThiFX2XokgHjYLUNXDHMzapWo56ZUSmxS5IJRJRdTCZ7VpWHUZWDUPRnVamXX
hVurm6eXbGpmeQXgRSozG7VhCk1qUrskSl0GCR3CyS4hAkYxAa6RRXvHsbbng2eS
Q2UkgRYaoSiQk72nZSg07kQ2qyo2TB6nVWdVuSI2vDI0E0ym0rElQ0I1g0U06RU2
NU7ElwwqmUfUYjGRd6WkgqcYrHsaumyTfUIZ/UoYEY3JaVKUsQzSQjzQSKHKJXsT
YiMQOQzWk2wzdUHHXHLF02Elp4e6zHrGq4Aywbkl6wynOCYngkbUSnW1LXgTVxuX
7AeXq3S3ZVXE4n8mt7bHG09XXEMkBqHowYfV83TFQ0B3e3oyDVebKYpU4nO1w3vX
FUQTIk2W00Ekp2aaOW4T7CHBnDjUrp9HbGaa62Z2zU8aSUfTekNh6bP5jyHxGYmZ
mYhnLykCrzv6byf5RkxkjaBR7Jl1xVZlgA5llAwEVAhbOBQAHBsCagpD1AnArj1A
UCXAoFAIQKlkpDwEABKWwN2DYrZFB7ZGC1BOC1kNk9kcIdkBIcMtw9wdW6wcM8Qv
wCUSMoGYeSRDYc5jiWSAx+JMeIhw21ok1BV41R5Ch5Ip5KhSi62+9/I6i22WiUoe
2D5BhyoJ2L5ToF2ZhcDsiti9i85VFeD/5WDr2Dh7on2YFv5DYkFAOXhoScFoOjd/
hkOmSAlsOdOVD7DAgWFvoCEnBYi+0xFuOWSRDjYpSPYaRoIN6YMCkCQuRzSCA7FN
ODFxRDO3RQuiyrFIyb4HOEy3FBEEksyAuTRglous49FtdYlf+6JxdKd3lgxhN7UX
mllId9jf94xwxxNOpVkHjryLN6NY6WNwNGmbqIezqRuITldVkkVBad1Jdr1Zeu1x
1oT0qcp6VRGWdbqIDa1hdCTy1CMDUU161DMNdkuIZfhd+zdwZFmoZ7dHRsyEZ3d3
+0Zv+PRQKgEcMK1+VuTM1iYUBY9eZEgpZ+g9QpZjQmoMAxA9AK4+g+Aewmg9Q8BF
AuEAAQmkC2Xlm2RESfZ2Y/ftIkKeBCFjMwXncOWfYuYROxNIXNPunwfOYPbIYA5u
ftRRaIhleAyeX+cocgxIOoSopoQgzodA3oQdoYug/6KYmdqQ6YVdtYt85YYQxYXY
e4m6E4T4qEeBZALQ+QmNN4dGPBcw5CzEqw6Yxw90lw1o0jrw1kihPtA5KjPI8kQU
i2L6J/XESy5I6RaCKFPsOxHcGI5TrRW0R0vyIxeo2UZo8zhAKzuxXo1xVcL1HxWS
5AMsq0WLiJRstLjYxKXYxXRcniZ43dIpbrn40MXhsrKhpLdjSVLHclX5azT7Ozc7
jHUpva/XjTTfOXRrZhHa3QfHXCX1kExOja+Bm6/6w64He+kIVE2G+NnHZG9WoFUD
Sk25GHQsXtW9W7ZMemySWk0Ihk1LTmwhPzRHfm5au85k9XZfnXYvH6USwGdU3PK3
VZvU53ZGS073Tq4893q84W3cv09mUFmOCFrgduMoDUEYN2PgLgZICuF/CkLMAAI7
zulmfBkH5bH1FZ7Nn12RxR0FoxoypQIzYjnMULCKlrnBIxJTX12x87+jf3cDXD1T
4Qz53CRNGO8JANVIPXxSXXHHEqfOKEIt3n/OXmdJAu3kgvoD7aPmGEYPQsWLvnws
2H4M/liNfkOgAX2FosgUYvxhiM4uA4MMEtMMJgDxIWkssXktoWYtStBEmg0t2w3I
LXCNohMtY6cuE7ILWQRTXP4SCs0VKPCWiuQBdKrgSsDIVE6Ps6cX1IQj4QcflBzI
quzJCUisNNdGSuBSpNqb6vSWCZhUOtK2uM+0p1zG5tlvgQ9upuO2sknERynqJzBX
md675psofOUT23J36ePJdOFPXv7Qt5/VR2xtVybAhQanohak82CllplVim2fhfNW
alF6H65pJoMsppFu+obApfRdpf151Werw0hX+eIzN6/XHrldN43Aoxme+fKXFfl7
DERcXSpfalJd+ehd3TbSjTjSwpdfKU2cxST5dQjW9R5NZMlTH70TgHR2+3Un7FAF
H6gFzdb4QHbHeO9ezeb7TYLcp3efYmrfjbrf7dhex7xcKTlWjedTdSjUlNDc5SRX
o4fvTTghy0OewZZss19drSDdt4rWF6ddupa2m2Elg/pdV6N6Bf1cHeNcsT5enCFe
ZtJOlcp1tdRfI8g8xOZdxNVs+sJW97Xd2TBMkoA0Je8nbF/en77AhvVfhOIabcY/
E+iSk/093RHe23LRI8xdQ9K5OeokXdBSQ/14mfOVuMI+vNR4apuqGe+Uk3S1RtMk
Ck4lmvevS1c+zEOP/3c9GW2w0na2K1eZ52q1TdS/q+W1K2m8F3Zuy7XHW8q2296+
Qpq/HKOND2E+gRV3D0K5X61OVONsP7Nu1Nt0d3hkf7bydttNxniYeY69GuQFDu5k
jtVAnBsD1BwK9CNCSDVyajxaYD0Caiagxa0gChGAIKbPkEoJbuYINhdlJyloXB0G
4hgzZGkIP1n3XSJCozWRVg1LjeMIPs/lDXjc9RjXHflBfubneT4L7QXjuuW4QBza
QMgfQdqEXm4MQDXmIN3mwdoPHaQvGHYeWJwvmEIsEM/0Ye2En9AUUOgWuGEceF0P
QX4vhJkdRLEsQ5Q70dOG0dSeYU3w10INBCAchsdEiwjbjk+wOiHRkICjfIhq1E7b
9xWfSDRtwxlZsVdGcnS8KeFazKtqOqrdTogM07WN2mtjH3kr2rSU8HW9nFzlLxe6
G4kM3JOjOVUB6FMO8KPaGvBgibh4IefVQAvz0lLGow8zPKXqLz2o9dBqrPWnmTzd
SRVQY4MT3tLTBCzQoQDnRJvVXR4I9R+93SbpP3/z8CqqPjLaGN10ET9fustW5nQK
94y0PuVg50u1ENLsRjSHVZQZYLUGAcyaDNRiLiDETa4nuNPdnp6UtI2RTgZwKKlC
DVou9MIvPTgQZGwjnBTwXUJMi6z4Gj4je1nB6PiF46n4zgetexu3mB6xc3ISQB9P
kKl4G0FSwxcQrQn+hnhXgHPCPGFBl5B5wInkEKF8AYgtYtBNg5rsk2YjPtGIPA0Q
b0J+7VCbIuArnIvye59CHaIEWfpMIX4RtFeZTTohUwQoCBAyLdUPq23D62YmmUfX
eDH0CizC1y8wiYYtSWG+Z3og7EesO1fghYag/QayBQGuj1AosKBcLPoHaD4BMAyE
ZwPFiizjAq+m7HZtuywTrBVYtkbyKJBRihQYQHfVgo/QijAxz4vOZwTdHuZX9xBn
7DciNjGhvAwYOIdiJ8BkJL8V+aABbHdlA6b9AW2hKDr8xg6oNwWh/BsFCxRbIdz+
qHe0Jfx+zcj6QKLO/uixcJ0cn+gSF/nixI7v9A+iFElj/3QEhEAB6SJjl9SOD4gv
g4AhcvfU44SMoBYYOgqKWiLwDhWxAoohJ1QGSt0BsrLATUUvCiksI+A3/s0XMbvh
LGkuUgbHxTx6sbBStBNvXhs7sZLOTjR1megB6LddihvFbmjVIwY1x0wQ00jZRSEO
C/UjJYOg1xsEe1kx/1AKuVCTzC8MSypLEizT7a3UCeSvc2nm01qGCBqhJHrmvlAI
WwCI0hHzr0KoHXdEuMUX9udWShXUZhbY0UgGzghc1sQPNWDAwJdR3oshmwSrLkOZ
rGCMu+uV7kwMog1DJClWZsXb2Hzji3uK4t4EMKZ7w9eh245cW0KSDCIXgdYOpI91
gz9ibuKcOqLbEmg7lRxtY1MR+mNz/Q30wieEaSJbFK86xNKaSPGlJEOQyUivXXBW
Ks5aw3gMIbiv9DoLrp8xWvFkoIn2g6Rly5weNHsBXTISOYSQaZBcXDr8wExzcJMQ
rXAgcJEguIRCJeB+poxsJ4Yg3st0EFUIkY+6T5NsGmpQhAxJbIiTKShHeQFIB7CE
EMVdbxtphzEByPVBVr8syRMwy3gEz3HohcIuSYLvmNCoK9hiZ4XYC9ErBRD5xCmF
xhL0MquV4gmwXJPYNDZVwRuweMyW8UsnqTmMbJDGA+L+A20DJylJyeoODyEisQ1S
X8ZuIcpeTPBrlXycSJqQQg/xqw/3vXRlGbCm2T+OtnUz2HKcDhX+I4a5h1ZrFBez
k8iASMEh+SSRkUvpgMxKBDN0AMIFIBoEIDtBiAmoLYN8K/jhZiAPADgMhF6DKAN2
2zQrHX1WDPBxC2ROEFJGmIntiknfChNsCSBDgsIraGpIxDubD8rCqALqMkE8hnhG
CHY9cqIQEJviY2RjCkagCpG2IaRsDOkTeW6R79mRT5BDhyJwafk7svIrFiaBv4ws
cO72BsB6BFEEd3C4o3FjBQbDA5CW5HFhvKKpbBFOG6FMGYx10YZFhEaEpTpABSIi
MkokAqRr6ANEJRaIRjIVsJw05mj6cFopUeUGtGydbR10eguy1VYmMCBanF0Soysb
asyBurCgQBloHJjRiHvaIcOnhLp4WaOdZWvnX0kzDGeIg43PzJt5Cy+Su0lytZKD
FKDdca6bfNcT9oHExxePDzoeUOQqzwe9jSobL0OSes7KHkhvAF0q4mSq4hsi2lzJ
F7ViMhFs9Ol63lm+o/u/ec9IcQdlGyAh7g+WsemcCWyBa1PXbqfg25iz/Z5Qn0U4
NzEhT7ZzcDOk7PtSfV0Q7pOfORJjk6xPZ7GUIddFUlYhT85sx5NrKpjsYEh40Unu
GCjEFyluJtIudsVXFxpCIckh3ibyd6Sza5Fw+fn6O14KTjZCkeqC8E4hKyeMTGB8
XiCfF3BihcbSDL+nTHS0akyQPboPMnk/oDKh42eZzE4hmwze+g5xnpWMmryAMQ4c
rAjHqSazrOcs62WACQi2Qj2oAhCC9TTa8SM2T3HsmcFripBZBD8soRr1ZkwSp8Mp
AMdsSuC2RshbPMaMGIAUp0vgeUGaXZDKiq8qSxlZ1q4NZkPQfkNyCKHbPxSIKncy
C31KeHBBLpKs2Q6OVgrZo4KrJRNaSBOmfGCDHcbsldMJBwiwgSuZwh3KehMqpCU6
iUcEDaQvDvsTxbC7BfQq26T5qJCnKro5yEVhiuFY2NaecGESbSEFZC4RTItWmfJ5
F/0QcaQqdbkKvSNbdYQ2yRxbCam9dMPg0zsxd1DhP+TKUzJWkDz1pCirRSGI4X1p
bho9MqanwkCxB+gNQYgPgDgSaBZ41weoJqHqB7A4ExAIwAgFaDDB6gXUo+mCN6mQ
AG+lEw4FJF2h2QsQNWbUeUHqzcwOhbKH2O/InRYjuAbM1OZAGn4jYdIAkL1EcGYk
DYDpR0pbOvzA5b8d+wLRkfeX0IsjnyiHbBmfy36YdHp1DJHC9IsRCi8OX0vkRBWf
5/S3+vhDYRAEo6gzpWio1Tsjj4acRKs58GcuIxxzcB9gqM7lmgHzpfBckKEY0bjN
NGqNzRpRImSzkwGkz9GHCdEDMhU40y1WInEgYzM9HkCh51PP1tcN5qPyA5KdGyeB
DDnfzfUhc+vMhKYxVz/aVkTtGcHDCfJRa+Y2FXtRyZcTjZWK3rtIL2iJ9GJeISMY
IJ0ETdzBeKxFZgrKCGRMQlYKfBkvPwkq9i1c/0TsC3wIx2J7WGeQfJpUVyygdcqQ
quUCnol8VAwvcS3kDSYgMVT3CVSuOwjhhcYEITIiMOloQqHcI8kameHHk1yMeQKp
xVRHXk7Ldyrcg1eG2BUcx4gr8lXnyudmGqaBwsbmG30S5iSkqyw4YvgumSt9eWuC
+1L6Ikn8QHoEqGhAhH24MSLV4kz1XdDBilopI2wDhAOLSjurvMMa5iL8HqjKSYQc
PfMYGvTVecBI3OVCFhF7GprO5GMOyRZI8H+qU8CffxntRhBN9x5CElle43d668JB
MEyrBFHZXGz615rN1ERB768w/BZYgDJpnxA2RsQu0RiLyv3n28rIsUHENcBPbAqi
6VaGyKFCyJgxUY1g6WhpN7FVokgNwC4BcDRh3yU1ZXeXkepibP0jmXwE+Tl3tSHr
75TKHYBctLWn45VXlG9W+tzRJBVYfyNqqrFrXolX1kbT4LZE+THtck8tSNQjwg1F
c7gIUMRH+w1S/rjkqlZDTsAFa4gW4X3a9VhqM5FdGFKmBKOGrbWIbvK2G66tOteD
lz9V1Gv9ZG3OAhQLJ9BEcUxpsFIbsVdUPlNOPjFEbc4JG7FdhAhBJRzSnC5jcRs0
kTUNIP1IhHewoXe9voz9cyaW2hUSVvoAkZfH3xTYbrvo8MfhriHN42DNMKmCQpeF
uD7B11+TLaBcGklSawNtVbub1zwRHMm8sE3DP0Q7VGs1SdUOGQv3OCgaVNOUNzWq
Rshfq1p9q4fBFpKjDryY1YfuYhPkl+aG1vXXKPUgOhXAwJ/a+LVtFSAFTke0RRoY
SQK2YQwQ7Yq4MSvbWGsMtMUDqHkIaHTyF1cW9LYOtqi1LrI9SvtWlvq2dbCt3WxC
A0tKb6KA+SyyeMH0SlLxdh5itKT3WOGdMKtPeYbb1prHVs7hKfB4VUEaAHB8ACQL
+AkF6AnBVmmgQgLEFIA8BWgRgXArPD2Dzt4lNfRJafV4CObJNGOBjdRPxBnsNge7
ZCIlD2jIQQt/wRafOR0HMqZslSvEaCG9neSGwTSqBl0raVnTd+6/ffr0pukn9ORQ
yh6eh2Ra39yGwoqhmKP+zzKpRiywxaqDlFsMoZ6ymmZstQDHBwoXUPEJqLoLHKic
yWzGfwquXKM3RYnFAfctU4kzqiLyiKIxEdHoCvleMrVhox07RM9OvQk+HlotaZKJ
a/g8tUGrPmgrw5s8glLJNYWTAoV8clPNt2YHe43V2xVVCJODHbcbxQpRMjuMDajp
MaZW+xseKh0qoYxwbITfYzGGc8fdbuv3VL0KGd5BB9utIcviRWQqPZVs42Zj2oH1
46F0i7QdIKCG3RgUuurTSnhUGfcSFO88bBLLM3KDTBkOsWd5Staa7qeZe2dGLMd6
CyS9AGPPQ5NWIp6OaLPVaDII57XFAmwe59bnuartijVTtGGu5XckzCw9cQnEreKt
26z/cE4v4rPqp7+60eRuprvIOiqKCL52Y6+vwq90jE3OuqrfbFR30ATHaR+qKje1
P3GybdDWnEpvuv0+atuLAxRdJUf0xVn94K8+dr0kGArLVI+okrDVdoXzs6ke6bkr
tuF+9a2N+KnSaGMUh9TFc29ts0wymxl+65EG4q/pX3D13F49OAhABSxwJnApZFLG
1MuCzxaQ/QQglsA4CrMoscAfQJIBSxPblltfV7ZsASGc4D2eIEhFCF+3TjBIyEGE
DBt5zTlSlvoavJ8G8j/rod20qpJHJcEVLl+x5YDvyMZCtLaRm2c6TtnR1XT4OR/T
BkhzukWERl1/Z7ITtw4fTKGj/H6WTuI6wVSOcUtg9/1p1rKIZdHdAYztXIyH5pOS
xGZyzRBGMkZeo4nDUhLWTS+d3y/GUxTQFQzRdYyMmVewuBS6oZMum5QzPl2LrIDA
GXjcazMqOr68JrXLpqvUqWsNd46koz/t67NzG9YqnSsFOTEN6t5F87KbsWc7JiTd
rRxoxUtoyW6cDPG0o0FETogHjZFnbPTKWV5pi2tDlfNVatx764FBN+p7nkY0EsL6
junEmDdUrYD76SLGorjiuvH/7o18xqsekJ1kI8hjOUHETxK/mTHDjTevBYmOc29G
TZT0HpriuFkw1PZcgzLksa/1S9z9isAGsmzzEzCgTBqP/fY0VkH6+9cY3Y7VRhPG
5wDUvJE8ei6P9q0Tki5RantbEA0W0qWrPXcZ31Ymv0ReluY8aVI8zDaauzEBUYRO
6lsDkbcWlrkqMJzqjAdFk5pTC00bRNqxZo872NnZ1290mwYxycOQomxTExvmZKag
MDwYD9bYGVU2m0ttX8bbCPpYvSnWL0DHmIY1gf6PLoAsyfQZp4vQBRZ34bAZgKWX
2grhlARgDgPUBSxQBlAUATUBbGyysHKCuzCEVUnxCJBMQ31IiK1Tmi/besHyC8Ox
CbFfBnIEhrJDiIRAw6qkpgylY9yA6r91DJ0jQtobR1dKMd10ww/0rfImGL++OhFo
KKJ1TKSddhqCpKMcPSillKytwwx3p1OjlRb4Q4H5I9JiMkZQRznekWb7ky+YUR2X
Z0iF3MVWzxMp5WLq4q8GjgqR6VukYsaatMj2nbI6JggMa5yjrJhk4rt9bfpi9Gx4
3gAZoFx6wViGuY0atlO5GrjV5qo9Ka0lB74TYW8Y8ScbVj6XaE+go8eaK4jHPzwm
2SnyaHXSzJe5muLvHijkuamY+xvakmwgtharjl+/46bvFU5T4dC4kGCfoBM2DzdC
xjC0/uQsSkcL/aEE3BfzFAGfjyK4C7FrrUQnX0Qdd8WRdotCDsYH5noZQPxODpj0
cJsnmrMXGMCD9t5rcZlyXEH6RTkF0NGvu3lgAIFUvAPWSdzoUnDziaPi4vpZl7pP
dFerk9azIuknDkMlvE2WgJOLyq4YlsLVhl5mzFBLZupk/XitqPmeLrKjo68bsvwl
YxDlqNR6tOPSVfzbF01rJtvUX6fLf4vyyJrk0B0grbtaKQqYbpKmg+QZRA0lLMUo
GrFrTGxX8vC3+XZDh+iK3fDcX3DYCIWMQHsAZBwJaQ4WXADACixLt6gjBzACgXiw
1BYg8Wd+J6fYM7s3thpM2EjDsgL80JoZvdslpFijqDy97L+uh3jNbTv2vAWITjwR
2qH0zYy46ZodOnZnOlOiJkT0vzNsjj+r00/h+VMOln1D5Zqw+S3w4zLsWcyhwwDM
YbOHGzqnFs14ZpbbLT8wiVKOzoRn7KuwoR7FPiFFKCdFG/O5c2KzUaEyRdU5xI/o
3tbzmGOi510UDc6IeiFdrvHI2ubKPSYMthmpeQedANEnNNBFzY9orZUbaEemmDE0
900xWX/lLuhEn+bq0AWwrwed80nSUtwRxTsMFFbWHRUSKEV7RoXuTyu7JrwJTxrm
ENLAbToKew+w01wpsswWJbgt2/aRgsv83SqktoW8PiYvK9UV45H9a+Pot7SwmTN0
YzMKzx7rkxlN2qibbBPopr4GcwknJf16krRtMw+2zrtfPO3JLxYtzd9w9sKUpZet
mWYZN3mtayLjqFCHXt9n6X3aCZUW1Jb9k2Vt0hGlOj0d9nlK81EGTiamYlMy3+t9
NgK1XHNsE3lKBdt3ufSysjFi7jtC8w6zjvNwE7+6682zdln3mVjVx0YlXrZOzHCj
e1L2yFSrti9ajLRsYzJVV242+JONgFUab4wxSkpzhqbfFZm0v4wy+wyPlqdSs6mD
OtcEe4BBkt5XttBVqoECFaAUAUC8BeLLgG3r1BNApAcLDUDgBQBLgxAE4CwFasvb
2r2aeeZeF2iTlJpP28aU7Vw2oxLqs+X9Hssfa+hoLuI+Q3GaXz4RKwZ6gOyoYgaU
ikd61jfitavKQcLpehzawYe2tGGBl+1ks0tPMMkMJlFZ6ww/1FHVmJR/08oIDI/4
Ucad91jww8uhns4LgtwBGNcH8OfXWW0FPs2UuqzPRsZQnQG0gPE4EzhdNMhIxxTJ
lk5cY0NkXOqyXNICtO4lL0Wpe00Gt1d25587yYZtKKdFKimTaFbzsGocrQ9iB2BZ
likWVj+jsx0FG2PWodzF+qxwU3ePFNKTDlex2XZHwow4HcC6i+Bp8eRsessD0SIE
9XlRWDFsVoxQlNVNL3UpK9xbWlaPghOS8fj8J/A8l672TTO2iQFsCMAxYKAzAd+P
FhSDb14scCS4FFkwC9BMAK4LYJqBQLAUD6WzBJT1I4NdNNgn9uiP3zg2/aLYksep
BLtK28EwdV/FXbIeebVLWerswbmmeQdr9kdWhjB/SKwe5n9DELPB4WdhaEP1DZhg
nbtcmUUOzrT0ojvQzrOU7Yn1O1w8w4paQzpWjO14NWG4pCNmWEjYBgI8kPlogN6I
YcxkeBt3LxzVo8G7I/0aMsbwSyamROcIF0yBdg8RG6jf8wbm0bYxDG/Zr3NOVg75
N0e0/MxuCKmJfWgl8bvjsAdxLyN6MfCTBK+XkXzF0PIvpJclVhSqtoU2sZa64vy2
AeGk0y7eO1cgu3NzFwYPOPcbpaFmmay+Lptb2zokXXqNj0lcW9N7Zdl2QNw72KvS
7xnOZ6q9FNyndMMTz/nFe2FIG1TKU1Vgtuj6pPltSrvyiq4HzSbcnHi/J+gFLLxZ
6AmAR+xAhSyNAVwU9XoPoEoNwIGQzAL+CgRfudO37QMUtZNjVHHtf7SInBCARXX5
Uzq3DocKNfKBgPeAXdyB1NdtduzFnh0lB6oRR2rWGRqDvM7g8Qo7XjDgy+6Wh2Id
HOyHJ18GZQ++m/ZLrlz6604YbNMOaZD1qGd4fhH7pkawRwI76HTcBHdRaM1AKjB+
B6SeHOMsRw0wkexHLR8RsF/KxGekqjGHy2F7TOUdw3VHSLrR+ufVe+GiuPdqV8q6
Mk4vfNGr/0dUbvfnvhi+KrXQWtj213yXYWvu2+e4EHi07352WwLdYHHHPLRq04Sz
bRvSuSYNx8rda7F4SvRXIV59wStWjzO1Xyu+D61y1d2vXB0TibXAbntGvEryBjUx
2zQN90rX977vHm9T0Ov8DIWS4HAiiytBiAd94YJqFpDT1JACQIwHoBqAoF34W/Q+
s9vDc+npr8QO4IYxoSVSBn4091JxFegsomat8WM8PemdVK0QJc3AXyy/uNL5rSzj
M8tazNrOdDSDct1s9ZFVv8HRZ2twdYbdlnLD70069MvOcdvX+FOoGQa9lF3O+3LD
jZTS1xh/REho7z52y2+czu76vMS8AC5UfLuxzcR6VjI83e0TfglWRR86IPf0z3Rv
ypG3HxRsnuEq2bzDdR5ZLPGnSejqZ5G0gk56qbMHmB8IjEOCvUX7USwbUmVo6vcj
6n4zpHKIhh3UtJXlDwZCzl5Dct4VQb9B8kicqJdETvaRN7LtHAhDOn2sBcZ43df/
R2nu+St9Ff4fYpk2hAwveSnzbknFr9e35yq8l5FviQrb4xuqr0fypsyWkO0AZAxZ
4CpZGoGOwOAoFGgBgFIM4GYAUBiA7QMNx2XE+9Q8o7EAqDCNGj8G/7nEN4MJDkin
AsIzKymYCB/L0ruaUPGZ62DYi2OC3zSn5qg5LemeczFnnB9s+s+7P0AOOutzyMOu
LXSHbiE5y56rPtvfpV1uhzdZ7e+e93/bp509YB04CLlmoz5BF+2CeQoQdCWL4e/i
8g2pHe75L9gP3LhCMvZjLLwi7Uc6tC7JuFr/S/H20vCvdF6NsySfc+UHHz3P45hf
xtedFbNJ1KnKRaE2/iLhlzi+akjxK3BqKXK6P4Id8e+eXNeu7lMlM1SXpenv6noo
aCpZiA9gtDyK8cQvW+L5mPrjUV2X1S3Ljw42a1eioszH0SyfrP+Y8Nu02M/RkFP1
42zvsZM/E8wl47eJcfUhameh20TdVn1+4/d6R99Ty7GKdMJ+cwvQpbqMXzSozgqP
/H8vfaC4dBew/Vper0Y9vfdo0+eFxvcryyLUhsb9XcjsKyOL4d92Z+75tm0gM/X4
y48grs1+tIuUw5Nxfd0I9k7fxEWYy9DrN3wrMNYYbn5BqN2/Od/j9hfinvRXZ7B3
hJ+qbL2mpik5nedKu/7ZWz/v+4Gw93qaYQAKBBAhwABwJgDwES7F/D4AJwClhbAQ
gJICz03YJeArgSStADtOonqD718oIBCCCQ3VmJAOQ5ymIx5KXTBwiqqVwDViNioD
iPzJmqMCH5PMmnr6ayuekCBqe0c1kg6FuyzsT6rOEHOs66GmzhT5WeqoNW4EOKHI
z7fkDnkdZOerTqz62G7PvYaduXPt25wGd1n54POnhgO5PWrzuiDbAPDj2ZoA/zh8
4E407hL6n4vHNcAy+2XoLry+ILuu4yc05gvzIQIkmr7KcRAnF6iUuXnS7FGL6jf7
yWAsoPYrGmYq8Yb+uXERan+Lis+aJBpLrHKOyrRrEEM8Rfob5BSqFpP676NjkoaO
S+QVmIf62+mMY/u7vhWzOOlXplasa3TJ46QeQUG45nG0ei34eWaal5bCu7Qat766
vNuf6wwDxs0GXy5XjlRDBjQaAwjBqQY47pMpYi45UubsPb5cubzLUEh23xvHrVBB
1DsY8mulrDBOOR1Lxb2QIln9Qx+dtj7YRUVvvhY76LtsCY5ixQTMI24rMIKr6+rF
sFau4cpM8ER6FfucGaC6+qMHpBtth7rCW/FsbjxBw+HsFYu/ftEH7+UpJsGaO1lg
aa2WlevSZha3orq4+kBHjc7wG8TjsImux3sAGnelHl7gSob+k1zT+VbDAFOuEABA
hwIzAJqD6AMANgDDAKWMoDDAmADgCEACQP0Db0YgBsz+gInmwav2YPvsCHMykscD
7ACMLkihmcap8Azq34j743AsZlkE5uLzLcFyEwgYT4aGKzug4SBZnpdIyBfSrdJ2
eRDkiyOexzuQ4aBVDloE1mtDpAD0Ot1r258+/ngzpMcdBLuQ7K3ZmO4zuEXncCeo
xeCI4A20RrcqSOHgUl4buyvqfjzS/gXC4a+8Noi4hBRvrr7aC2bni5nmPoqmFN+y
QZiqlBrxpf4h6NghEGUW/tiBb9BtsE5bVcsFg8EkSikGRLVcZwZApjBggSTANhm2
tAb6uTdCqZ4hiTma4neFHjqwqheUq2FUh+9hIDEAlwDAA8Ay9EAgxYmoJFiagQCC
kCxYJwDUD4AX2CD7emZAVUifiHpFL5mwCIqDrxuE0qhAQ+vyIj5oSC0mNZLSiVBn
Zi2DYDwG8AhKjVr36QgV8xGeOoSZ56hZPqoQVulPnIE2eezooHEMygWaGqBFoc24
QAn0mz40M7nrWZdu9ZvoFOhCoi6F7u3hlJ7hGxzJqJjQ4vqerYYj6i4EIuK7pJxg
2XgRDZTCL1tdAxh+7sGErm6jnV5W4cHqY6+OFIQsFoutGtTA/BdNub6+OVYSP4Ae
HEtex3hWxnME7B/EbkiCRUlonr8BNSKFpkWrQZVpd6RKhi56+NPEpHmsvLqpHPh6
kX3Djae3oR7/+3YYAFJOhIf2FMyeyJpGdq0AaVIMeVQNvRsAMWHsDMG/QAgAr0uA
PUDYArQKfYpY7IdvRwAG4eCJbhvAKlCnhUPgpAw+aPvVhjQgiOxIG4HCKhDI+sZq
UY4+bCGXhJQdLCHJWwiDm+FKB2oWIG6h8DJIHmeP4ZZ5Gh2OsWYHODPsBFYc4Ec5
4tuZzqMoXWHPjoH2h3PohG8+yEUYGsOjOjfStoYArYEEUl4RyxTuJyoRTXAr0CNQ
ER8YURGg20jhGG2iV7HcATuxjI0SfKgQbL7BBWRkmFhBGjr4wdatXszK2s+5opaD
+6dhJEs0ZNu6q3hUlrygq4qEPUrqqxbG7YZqhYsX42CCFhzZoqdEq/4404AaugkW
1YQ/5PRElkNaXE83PmIIWQqGlF0m53L2i7eM9vt64hxrj2GNMfYdqbEhkkOAHNcU
MWDFWRxpo66jh6ACuAHA2APAQwAFAFFgZYcCDFhGAWwP0CSA2fOFgIAjQJ1Igi3U
qQF9S24TsDNY00oqxnAfVn/aihc6jJHByqbghCxmVQQmZQOfjv1SYKWUWoY5RmZg
CyluGzuT5gsW1lT7Gh+zjlGHO5oU261RkETYbWhMEU1EeeVzl56MO7UXTooRj1ro
xcQ8Ii9ZYRMyCEb2BSMB2Y7kH1ou40RQLqGGJeDHEr7zRJEHG7KcMLtLprRrgQmG
bRO0QV5Rxm5rnbjejEXHHMm9QWra56mYRRKcRKYYB6XB+uPjysRffl0HgeTwRgp9
BzemnEkwUhmbLfRh0ScbgesHp0EVqoPLbJ9BcMbAbYhRHiYoke+Iclar2XbEzISx
nTHXG4G+VhPRVADIO0C4EECJoDFO8AHAAQIcxDFgxY4WDEqSApZNvT+RhASVjg+o
kGxKeoSaiGZw+GIBCDHAFKEcAXg8kGp7qhyUcTgw8lcZlGI6ogcW7iBBUfqHYOas
ZW7/h1PntZARz0vW6gROUcdb6xUEZoHGx2gabHwR1zt563OyFM6GdRAXm+BIwqMD
zCbAovmNI6idgSNFJwaEm8oLuojl7FuBwLr7HScVRGRE+BVYIiLBxK0Xu6w24cVr
5MyOvttH0RLQcnH5azCTUZB2y/gEKnRnxmmF66j0XjYs0N/jWHc4mdh+4YoX7vmI
zBYACf7cySwVUKB61JnImwhfXm77PRCiRhq62JvvAqLBaqIomEkkITIk6J6icCEs
optq8bSJpeH8FSWqdu7aWJv3Ev6m+vwesae2rCd7a2JXcntHO+LYRcE60HfsYlDg
piRHa+JqJlv6EmBsk2EUu2fiWG9+5dgujKwBEGCZKJdwColZ2QkHEkBJT3OZbLBj
tDdEmJCSYArR2VKqsQ5J/iXklJ2uYb7LwqgMfwnPEL0bkGbUXCSIlVwlSR5ZXRfM
s0lth8ph2GUgBkUjFGRvYSZFoxOrDeFnR3eC5YFQNLj5wjhI8RICagzgLPApY3YO
0CkApAKsztA3YEAhQA/rl/D6AsQOab6A68Rwa9yyWuWjHAFgfzFHhi3peDoq4NIb
opGEztaBFxlMANgPhgQnTzBCBPkW4wMn4c/HfhKDIaFY6u1rT72ef8VVEAJ6gXVG
ueDUQGCwRdoRAAOhPPtAkdR//HAns4jEHFHvsH1lYELkTsVxz2BV0Fci5Ck0eI4J
ea7uGGkR4LuRFOsVEdQma+x7jHEMR9cdrqxx6LtpFlJAwWhYMpCPJIkMJdtHb5yJ
nJi4kaJdqmLLghdavomeSAqkh7qWIIapYX+tSe8HD46oU1xQmslt4kz6ctiB6r6b
iX8SthR4jKnO60lHrJYWSvBpa+yNXLDxqSxtvqkCKfnIPEGWZKEZYH61cHan/iOf
makupAGJkn8pitIh4px6JJIl5cfAQVydctxtUl/EFcXVyWpoaWPba8RqZ4lsRgFg
/rqy2XDybyR3XG6k523EdXZAGL/vmJgGGcaBZaykqX6k6U6TkbTFpljqwk+Jzdry
6KULcYqaQJOIV2G9JprijEDJa9ujHkhVabqZBJUyQQaBuJwO/D9ABwHACxAgnkuz
4Ap+BwCEAjQPPQoEzgAcntWUkDNBqweLG1SIJAhouSXEUILcAIQK6jpDixE/s6RX
xyfvhBdQ5enfEGeIge+F5R3yWJyYOUgarFwcf4csryBtnlrFVROsWBF6x4KQbGtu
51tCkmxcEboEIR2IQYEwJyKa6FvgqQMqovA58KL6HhQ0eglE4+4uEbk4jSLgkjm3
sau6sO/sRMixo0ZtSlhxtKYmH0pKLlynZ2qieMkqkCqSCSaQtupMYWOXxnCGVixs
DkG0Z9JKamAwH0drbNeqqdqlAWAaFrZc2QTrVRT6Bfsb5f2n0Trb2ME1q5TsZIwY
nqsuXAnNAG+HGSdTp6byY37pxSIQnpHprxhdHU8+me341pRmXYI1qrxgKbmq4/uZ
k+y+RmZmqCdmQKlbm3JnmrGZ/JvYmlhzeppkfyjtKZZ5qQ+vLZFJBaUrxaosqRfq
8RBmoSRcZAdLEwayecSmJRJFegcHxM0trpl/EHqcLa1hLxu6lNxUqQGplxfnLqnK
ChWU1zFZ9aTFaNp7cQlazaXcWR6oGgyX3GlZ1cMOHWRD3vFjb0nwlAC0gpZMQAQI
uBBwDwEDILMD4ABwNvTwE8BAkC4Ai6eJ7mBRkLcBjocobcCIZjwCOSKYTkBOTZy4
hvcnWB7/lfFAGamfoJyxC1lVGKx4HD8lrWxUf8kFmmsd/HDKlUT/FM+ZDBBFAJRs
bMpAZsKfCltRiKVbGwJUGZkipAnyD8R1omonsrOxGCUyRCQHsZhmAu+CT7GkpfsX
NH4Z7EoNFUylCaHHwu8YbQnpW9CW+7dBAvFIoYeJWVnEW6pIQMbE5NcQ6z5hCWQh
ZMZ0aU/IG28GIdkV4FWX/6IxnccjEWK5Ho1npWQxgdlvBJUnjE2REgP0C9ACyTAA
pAvQF/C4AewG95AIxALgSmApZKsy0gjQDNmBR6IJyoji1SMJAw+MoRfT0SjBCIaS
0anhd5L8LyV34XUKUGpTHZhngrHGeSsaT6XZfyW/Evp7ImVEmhFUSoH/xagffz1R
pOraELK5sSDJNmf/MQCUsAvtBl5CxIq8BYRoXshnpEoAoVRVgRKXL4EJCOUQlysy
vviDByRGZjlHupGYwnJhhado50mujnJFYeIKm7ZPuk3gTk4mROch615rwczY76Zu
crZFBfETnZN5CftcEsJpXuy7JMNeb44pZHdnsaV5jWopFaR+0VBbj5E+EH7j8Rxl
e49eePgDFL5YvJbk9i8cWvmtcG+c9Tp+vvJ0lYhVWT0kc5fSW2nc5HaTqzreNHrv
nW5d3m1mwBpZAEqNAUWKswQI7QDACtAswClgnALHpoAHAqzJgBH26uRzELkhqBeK
OBQXrG6hmnyPVCla8IsHRsBxDo8myxD4dLECC+npqGfJfzE/H3phUQaGu5sga+kA
RNPuVHaxD2ZhxgpfuZCkB5NDkHkMOIefc6QZqEUxz4w4YNMjx5BFERT9RJFFzqBo
+INOI4JQYVhlw5OGSRHEJFKQvw2kKedC7o5aRsRlY5dKUXk8pM+UxEOsKhbtFqFF
7hpTaWnCSTmaFOjq5lPcCFixFhaRYaXnt2CWYOEGFZeUYUMKlGRPYUZ6Wc5no2rK
Qjxep+sq44eJF8h4WtCi/kdED+Ctmol+FjyKKnokvhZbSvu1unymeFacjbabBOEj
EUhFRdrEmxU1YF/75JpEjlm3+CmRfLmF0lDxkiZVca7ZhpAdGn4lpqhYnHIh5Qcs
Zm+7EQHSQxoMRlGcuF+o0XpRMMV+aU5yIXGmtG/cRfrDBrRq3Y1cq1J8aSYQxT0V
jG+RUVmpRTRR0UhU1hRfo1FxqbkYLF0lOUVjGAafzkt5GxQ4WO07STxoBpN0WkX3
RxRfna7FcRbZQJFIVAGlRF5nAGlhFOlKsXne3hZMXlJ9meZxXGGhY7RDFY/jxp9F
G9gNrT5u5pykH5erkfmdh89gAGtpXOQ1mX5TMvzINx8fGP59pIWCgTBAHAOFjvwv
QN1l/w/+ZoA1IygO0ArgMWAkAgFySqCBzy3Mb2qeQfMUHGrZZ9EVpoQUnjCBwaqO
ej5LSrEpeK6qdBNj5oFkWVbb+g98TemPx+UXgUvx0gYQWlRgKWQWfpFBeMrM+loR
CnQR72aAnAZLUXoFgZSEb9nMFNsezjxQOIEhA1Y71hF6bAr3IIWp5MRsRGzR5KSl
7cEM+HnlxhBeZHHKFQiQKwVex6FZleO9JDV4yk/meCYZp1tpcXph7Fq77b+pOYuj
k5uuCgUvB1OTybiZ1fgYl5w/ejyZyZ2iUmVPmAWXwGKh2mWmVuWV/j6IcBkQkJGF
+TOQLmD+81JVj9CjNqWXbFAQl34EQPfiFwZplfqX4SZiWZomiZONCN5AaQ3uLb3B
neexilCpRX2XgWq+Qjx1yxwAzkjlHeVFkp0gwi3iiylYf9EDltckqqhQR8Wqp/U/
JfXa+oWIOCCq08roIKFBgNKUnX+ZkqAKyU4HiqmFh2qp5AZl3Gc2W+01EAvIH6Ux
gxbyqNMH1AKQMdsWLXls8kkAOBT6vH5/lrMjapJZ1XCBV4Kv8ssaCZHZacXG6zqh
eWaK1XrkXGyaMHAXREOypP6xlEiVQpEieqnCr2W+ZdLRkaLWL3nyJQbMmUSJM0PQ
i5IL4SSERl++SRWiKfBpanhldxE9x2KY0ftCbl6Jqea8JvqN3wD8lWPFE2pm6PxV
AlFEiGqMVHrBJXxpZQGxpwwkUjUh6eL7uwpIKYWpyVJwNCsnrqVuik9xaVMIDpVq
VhOTq6s5CMc2mn50Jea6mR6VoZXclCZc4oaVnKCiVVA78EIBwICAL0CEAY2VcC4E
ygFFgJAcAMoCeVCAFFhfwZJRAAlY8UNJCGlWIAezXQYMHSUQAkUYyWkihVARDZCY
jJm7bA8QKcD0IBqXIZTWEHk8xCl9uR+GO5X4c7mgsz6UQXu50pZ7nkF3uaCm+5xO
sAkqlgeZ54MFX/D9nuGf2SwVYCikLRKqwmojUji+PFefDmkFpSGFiF1pRIW2lQOb
Cm7uGOY6U/KzpQdHRx/qecVoulhTyY+lziS5m6FftnBXVcphWRZKpLEAPaCmk+kD
zh6/dgEUwhUejLEvBnpYpmBZd4ljbHRCej5k96n8mGmDUteqEklFMaQEKR+KbFCh
6VxjhHIr5neYGVxyg/l2Ll5ZXoCFXF4KlX6CChmeCrdl0hk3nmJ0lkOUg17FZqnj
ldUB8DN8FQRRWu695Suh7lfoXfm/uqmWWV4q55RbBwZPJT+aoV8qoSKrBR1IzmM1
tZUxiflCENdCFJsFcKn5iV8sBIdeWYpBX2oQCheEFBstWcSIVaMJeWRsStVlSoKA
/PiBCy1jieU7lDxHVBA5G4sWLblESUTQ0VSUHRWDadwaOUrlXCixXyQikJMZm1ml
dJBKVZ8TmWXcdtbOUI89lcZXt5+tebUKVnKjCJoaKckuX9lvtTYLYgIUIDrzq1XE
sXyVYAFJLo4UkAFLFiSdT4UTCd9DzB5yf1FnW36RanCAlq9NdnF4Wn+snVjQrkih
C4e8foXXCyOwHNBVgCULEUGoDdWbQCQAnBwiNl9YRcF8k3apkR9aA+XUm1U7qBbD
aoSMC8E95ldTvorQN9EzXl1x+uRWwYHUDOrx1+dYnVXBs9f2rLq8PmurgeHdXolb
qOIDQjg105UHW7B2EFWAS+eQsGLHloJgbVipD0GIhIQ4YH/K/lj5R7r3qe6jjF81
LFgLXRZbwN9psV1ZfzVG2Y4h+rJa9sdPV050WUWp2iTKYmV5lBYSakPQsqihCHAv
1dTYoNCWbxyUBaMPuie1eYURWoNuuCeH5Vi5RxHpZ33HlVVgVDUTVz6HSWCV6Rbc
Sfm1ZnOTZU85JwhQ30N4WUTQZxbiuAAWQy/HABwA2oDPDcAL8NACIg2QFUAHgpAM
2TFADAIQAuRqzA+lFRHILMDaNOjXyDVAIgEdj9A04PoDagS1hVXnZ+jcslGIRjVk
DqN+Ba/G1VejdgAGN1jcY1wIb6YBFcikAM41WNuQDY0mNeOt7mWNhjcY2mNT2YBS
WhwTa41ZAdkf+ngUUTX43GNQCDCndwCTVAD+NcCJwBQAcCGmDqguLCsBpNGTVk2a
ghAFEo8sBTT40hNWQIzGYAUAPFhEAygCIyzICALMBWehTaE1RApAHU3LJbABQCIg
uAKHnKNlTdE36AK4OKDxYPTX00hAIWIqA0gvUiaDYANIBqAtWYYEjDgg+0If4zYC
zUs34AEVWgDfUyQP3JFSZIgU1GAbAAYBSNyRAQCrw1oKVLtNMTShF/p4oHo0igJA
CU1lN1HHCmkAJAGeTj0qzMyAhY7IAyAVkILXAiV8/oNvQIAygNPDFuK4N67wtYLR
AB3NwzbkBhN9IMk1QAXYETL+8ZgMIDMAMWN811SpTcgjsMLhtkCQt4oEwB/gnUmg
Dj0OQLgCaAwQJkjIx2AEQB+RpHg2AcAEOEla/YQgFAB3gR3o/DgAo9MQUxWwAA/A
gAD8EAA=
```
%%

View File

@@ -1366,6 +1366,7 @@ Plan
Pragma Pragma
Przez Przez
Pułka Pułka
Przedstawić
obj obj
oh oh
oq oq
@@ -2735,6 +2736,7 @@ oikonomos
ognisku ognisku
ograniczoności ograniczoności
obecnie obecnie
odwrotnym
GoTo GoTo
GS GS
Gl Gl
@@ -3994,6 +3996,7 @@ Goqg
Gcge Gcge
GLkr GLkr
Głośnikowe Głośnikowe
Gliwice
Outline Outline
ON ON
OD OD
@@ -5321,6 +5324,7 @@ Oblicz
Odbiornikowe Odbiornikowe
OiZ OiZ
Opara Opara
Odwr
endobj endobj
endstream endstream
ea ea
@@ -6709,6 +6713,7 @@ elementami
ekonomia ekonomia
ekonomię ekonomię
efekt efekt
egzaminy
Length Length
Link Link
LN LN
@@ -10792,6 +10797,7 @@ szeregowe
stających stających
sformułowania sformułowania
systemów systemów
starostą
JQ JQ
Js Js
JX JX
@@ -33382,6 +33388,7 @@ Detale
Dana Dana
Dany Dany
Diraca Diraca
Dop
dA dA
dET dET
dg dg
@@ -34787,6 +34794,9 @@ decision
domowym domowym
dobra dobra
decimal decimal
downey
dopełnieniowym
dodanie
YI YI
YT YT
Yv Yv
@@ -38888,6 +38898,7 @@ bitem
bff bff
bcc bcc
bogactwa bogactwa
book
jW jW
je je
jz jz
@@ -42855,6 +42866,7 @@ ukształtował
ulepszona ulepszona
usług usług
ułamkowa ułamkowa
ustalić
Mh Mh
MediaBox MediaBox
MI MI
@@ -45545,6 +45557,7 @@ logarytmiczne
leży leży
lewo lewo
ludzi ludzi
little
Kz Kz
KM KM
Kw Kw
@@ -52168,6 +52181,7 @@ rydarkowska
ręka ręka
rynku rynku
rudnicki rudnicki
range
tI tI
tU tU
ta ta
@@ -54859,6 +54873,7 @@ wprowadzenie
wykładu wykładu
wytwarzane wytwarzane
więcej więcej
wyjdzie
pDJ pDJ
parenleftbigg parenleftbigg
parenrightbigg parenrightbigg
@@ -56337,6 +56352,8 @@ przyszłości
proporcjach proporcjach
podział podział
państwowo państwowo
poza
przeniesienie
HD HD
Ho Ho
Hg Hg
@@ -62911,6 +62928,7 @@ możliwości
mają mają
metod metod
masowo masowo
modułowym
nD nD
nF nF
nZ nZ
@@ -64267,6 +64285,7 @@ naturą
narodów narodów
nowoczesną nowoczesną
nowoczesna nowoczesna
następujące
gNx gNx
gHI gHI
gri gri
@@ -67017,6 +67036,7 @@ kurzbauer
klasyczna klasyczna
krachu krachu
kogo kogo
kato
üx üx
ün ün
ür ür
@@ -69756,6 +69776,7 @@ zaspokojenia
zrównoważony zrównoważony
zasobów zasobów
zmitac zmitac
zapisie
ÜI ÜI
Üj Üj
ÜX ÜX

View File

@@ -13,26 +13,13 @@
"state": { "state": {
"type": "markdown", "type": "markdown",
"state": { "state": {
"file": "PI/PI.md", "file": "TUC/Bezhazardówki.md",
"mode": "source",
"source": false
}
}
},
{
"id": "812edd82a4cf8911",
"type": "leaf",
"state": {
"type": "markdown",
"state": {
"file": "ASC/1 SEM/Ćwiczenia/1. Konwersja Systemów.md",
"mode": "source", "mode": "source",
"source": false "source": false
} }
} }
} }
], ]
"currentTab": 1
} }
], ],
"direction": "vertical" "direction": "vertical"
@@ -106,7 +93,7 @@
"state": { "state": {
"type": "backlink", "type": "backlink",
"state": { "state": {
"file": "ASC/1 SEM/Ćwiczenia/1. Konwersja Systemów.md", "file": "TUC/Bezhazardówki.md",
"collapseAll": false, "collapseAll": false,
"extraContext": false, "extraContext": false,
"sortOrder": "alphabetical", "sortOrder": "alphabetical",
@@ -123,7 +110,7 @@
"state": { "state": {
"type": "outgoing-link", "type": "outgoing-link",
"state": { "state": {
"file": "ASC/1 SEM/Ćwiczenia/1. Konwersja Systemów.md", "file": "TUC/Bezhazardówki.md",
"linksCollapsed": false, "linksCollapsed": false,
"unlinkedCollapsed": true "unlinkedCollapsed": true
} }
@@ -146,7 +133,7 @@
"state": { "state": {
"type": "outline", "type": "outline",
"state": { "state": {
"file": "ASC/1 SEM/Ćwiczenia/1. Konwersja Systemów.md" "file": "TUC/Bezhazardówki.md"
} }
} }
}, },
@@ -238,42 +225,41 @@
"3d-graph:3D Graph": false, "3d-graph:3D Graph": false,
"juggl:Juggl global graph": false, "juggl:Juggl global graph": false,
"random-note:Open random note": false, "random-note:Open random note": false,
"obsidian-excalidraw-plugin:Create new drawing": false, "obsidian-excalidraw-plugin:Create new drawing": false
"breadcrumbs:Breadcrumbs Visualisation": false
} }
}, },
"active": "812edd82a4cf8911", "active": "de054390e12f6929",
"lastOpenFiles": [ "lastOpenFiles": [
"ASC/1 SEM/Ćwiczenia/3. BCD i EXCESS-3.md",
"TUC/Bezhazardówki.md",
"ASC/1 SEM/Ćwiczenia/2. Reprezentacja liczb ujemnych.md",
"ASC/1 SEM/Ćwiczenia/Ćwiczenia.md", "ASC/1 SEM/Ćwiczenia/Ćwiczenia.md",
"TC/Wykład/Wykład.md",
"TC/TC.md",
"ASC/1 SEM/Wykłady/Wykłady.md",
"ASC/1 SEM/Wykłady/Untitled.md",
"ASC/ASC.md", "ASC/ASC.md",
"ASC/1 SEM/Wykłady", "PI/Ćwiczenia/3. Projektowanie rozkazów.md",
"PI/Ćwiczenia/20221121122351.md",
"PI/Ćwiczenia/20221010123607.md",
"PI/Ćwiczenia/1.Rekurencja.md",
"PI/Wykłady/1 SEM/20221014134528.md",
"PI/Ćwiczenia/2.Gramatyki.md",
"PI/PI.md",
"PE/Wykład/Wykład.md", "PE/Wykład/Wykład.md",
"PE/Wykład/000.md", "!Załączniki/20221123102116 2022-11-23 10.21.43.excalidraw.md",
"PE/Ćwiczenia/1 SEM/01. Wstęp.md",
"PE/Wykład",
"AMiAL/ICT/Ćwiczenia/Zadania/Całki/Zadanie 1.md",
"!Załączniki/20221125102535 2022-11-25 10.39.55.excalidraw.md",
"Elektrotechnika/Ćwiczenia/20221125102535.md",
"Elektrotechnika/Ćwiczenia/20221123102116.md", "Elektrotechnika/Ćwiczenia/20221123102116.md",
"Elektrotechnika/Ćwiczenia/20221028102800.md", "Elektrotechnika/Ćwiczenia/20221028102800.md",
"PE/Ćwiczenia/1 SEM/02. Pot. węzłowe.md",
"!Załączniki/02. Pot. węzłowe 2023-10-25 08.42.46.excalidraw.md",
"!Załączniki/02. Pot. węzłowe 2023-10-25 08.38.29.excalidraw.md",
"PE/Ćwiczenia/1 SEM/01. Wstęp.md",
"Elektrotechnika/Ćwiczenia/20221014103322.md", "Elektrotechnika/Ćwiczenia/20221014103322.md",
"!Załączniki/01. Wstęp 2023-10-11 08.42.12.excalidraw.md", "TC/TC.md",
"TC/Ćwiczenia/3. Układy iteracyjne.md", "TC/Ściągi/ALGEBRA BOOLOWSKA.md",
"TC/Ćwiczenia/Minimalizacja.md",
"!Załączniki/Minimalizacja 2023-10-24 15.05.07.excalidraw.md",
"ASC/1 SEM/Wykłady/Wykłady.md",
"ASC/1 SEM/Wykłady",
"PE/Wykład",
"PE/Ćwiczenia/1 SEM", "PE/Ćwiczenia/1 SEM",
"PE/Ćwiczenia", "PE/Ćwiczenia",
"TC/Ćwiczenia/2. Realizacja układów na stykach.md",
"TC/Ćwiczenia/1. Algebra Boola.md",
"TC/Ćwiczenia/Ćwiczenia.md",
"TC/Ściągi/ALGEBRA BOOLOWSKA.md",
"TC/Wykład/1. Optymalizacja.md",
"TC/Ćwiczenia/aaa.md",
"TC/Ćwiczenia/Untitled.md",
"TC/Laboratorium/Laboratorium.md",
"PI/Ćwiczenia/1.Rekurencja.md",
"ASC/1 SEM", "ASC/1 SEM",
"ASC/1 SEM/Ćwiczenia/Untitled", "ASC/1 SEM/Ćwiczenia/Untitled",
"ASC/1 SEM/Ćwiczenia", "ASC/1 SEM/Ćwiczenia",

View File

@@ -0,0 +1,22 @@
Przedstawić w zapisie modułowym odwrotnym i dopełnieniowym następujące liczby:
|$x_2$| `.1011,0110`|
|-|-|
|ZM+ | `01011.0110`
|ZM- | `11011.0110`
|ZU1 | `00100.1001`
|ZU1- | `10100.1001`
|ZU2+ | `00100.1010`
|ZU2- | `10100.1010`
|$x_2$| `.29,7`|
|-|-|
|ZM+ | `029.7`
|ZM- | `129.7`
|ZU1 | `070.2`
|ZU1- | `170.2`
|ZU2+ | `070.3`
|ZU2- | `170.3`
A1B,5F

View File

@@ -0,0 +1,49 @@
29.7
bCD
0 0010 1001 0111
\- 1 0010 1001 0111
\+0 0110 0110 0110
1 1000 1111 1101
1 0111 0000 0010
+1
1 0111 0000 0011
Ex-3
0010 1001 0111
\+0011 0011 0011
0101 1100 1010
-x m 1 0101 1100 1010
0 1 1010 0011 0101
d 1 1010 0011 0110
z = \pm X \pm Y
x=74.5 Y=29.1
Odwr i Dop w 8421 i ex3
x=74.5= 0000 0111 0100 .0101
-x = 1 0000 0111 0100 0101
-x = 1 0110 1101 1010 1011
-xo = 1 1001 0010 0101 0100
-xd = 1 1001 0010 0101 0101
y=29.1=0000 0010 1001 0001
-y = 1 0000 0010 1001 0001
-y = 1 0110 1000 1111 0111
-yo = 1 1001 0111 0000 1000
-yd = 1 1001 0111 0000 1001
jeżeli wyjdzie poza range 0-9 to dodanie 6 i przeniesienie
x+y
0 0000 0111 0100 0101
0 0000 0010 1001 0001
0110 0110
0 0001 0000 0011 0110
10 0000 0100 0101 0011
\\------------------------->1
0 0000 0100 0101 0100

View File

@@ -1,4 +1,4 @@
# ASC Overview b# ASC Overview
```ccard ```ccard
type: folder_brief_live type: folder_brief_live

View File

@@ -0,0 +1,2 @@
![[02. Pot. węzłowe 2023-10-25 08.38.29.excalidraw]]
![[02. Pot. węzłowe 2023-10-25 08.42.46.excalidraw]]

View File

@@ -0,0 +1,21 @@
F =
Kod ![[Minimalizacja 2023-10-24 15.05.07.excalidraw]]
Kod graya:
LSB mirrored, MSB Negated
00
01
11
10
|z|x|c|
|-|-|-|
|0|0|0|
|0|0|1|
|0|1|1|
|0|1|0|
|1|1|0|
|1|1|1|
|1|0|1|
|1|0|0|

View File

@@ -19,3 +19,78 @@
%%za a+a=a^2 ban na życie%% %%za a+a=a^2 ban na życie%%
```
\documentclass{article}
\usepackage[rgb]{xcolor}
\usepackage{karnaugh-map}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\definecolor{mycolor0000}{HTML}{F70400}
\definecolor{mycolor0100}{HTML}{AA0154}
\definecolor{mycolor1100}{HTML}{5600AB}
\definecolor{mycolor1000}{HTML}{0003FB}
\definecolor{mycolor0001}{HTML}{FF5500}
\definecolor{mycolor0101}{HTML}{AA5455}
\definecolor{mycolor1101}{HTML}{5555AB}
\definecolor{mycolor1001}{HTML}{0055FE}
\definecolor{mycolor0011}{HTML}{FFAA01}
\definecolor{mycolor0111}{HTML}{AAA956}
\definecolor{mycolor1111}{HTML}{56AAAA}
\definecolor{mycolor1011}{HTML}{00AAFF}
\definecolor{mycolor0010}{HTML}{FEFF02}
\definecolor{mycolor0110}{HTML}{A9FF54}
\definecolor{mycolor1110}{HTML}{55FFAA}
\definecolor{mycolor1010}{HTML}{0FF6FF}
\pgfplotsset{colormap={BR}{%
color(0)=(mycolor0000) color(1)=(mycolor0100) color(2)=(mycolor1100) color(3)=(mycolor1000)
color(4)=(mycolor0001) color(5)=(mycolor0101) color(6)=(mycolor1101) color(7)=(mycolor1001)
color(8)=(mycolor0011) color(9)=(mycolor0111) color(10)=(mycolor1111) color(11)=(mycolor1011)
color(12)=(mycolor0010) color(13)=(mycolor0110) color(14)=(mycolor1110) color(15)=(mycolor1010)
}}
\begin{document}
\begin{tikzpicture}[font=\small\sffamily]
\begin{axis}
[hide axis,shader=flat corner,%colormap name=BR,
plot box ratio = 1 6 1,
view = {0}{15}]
\addplot3[surf,
samples=32,point meta={int(mod(-atan2(y,x)+45+360,360)/90)+
4*int(mod(atan2(z,sqrt(x^2+y^2)-2)+360+180,360)/90)
},domain=0:360,y domain=0:360,
z buffer=sort]
({(2+cos(x))*cos(y+90)},
{(2+cos(x))*sin(y+90)},
{sin(x)});
\node at ({(2+cos(45))*cos(-90)},{(2+cos(45))*sin(-90)},{cos(45)}) {0111};
\node at ({(2+cos(45))*cos(-90)},{(2+cos(45))*sin(-90)},{0.15-cos(45)}) {0101};
\fill ({(2-cos(45))*cos(90-50)},{(2-cos(45))*sin(90-50)},{cos(80)}) circle (1mm);
\end{axis}
\end{tikzpicture}
%
\begin{karnaugh-map}[4][4][1][][]
\end{karnaugh-map}
\end{document}
```
```tikz
\usepackage{karnaugh}
\usepackage{pgfplots}
\begin{axis}
[hide axis,shader=flat corner,
plot box ratio = 1 6 1,
view = {0}{15}]
\addplot3[surf,
samples=32,point meta={int(mod(-atan2(y,x)+45+360,360)/90)+
4*int(mod(atan2(z,sqrt(x^2+y^2)-2)+360+180,360)/90)
},domain=0:360,y domain=0:360,
z buffer=sort]
({(2+cos(x))*cos(y+90)},
{(2+cos(x))*sin(y+90)},
{sin(x)});
\node at ({(2+cos(45))*cos(-90)},{(2+cos(45))*sin(-90)},{cos(45)}) {0111};
\node at ({(2+cos(45))*cos(-90)},{(2+cos(45))*sin(-90)},{0.15-cos(45)}) {0101};
\fill ({(2-cos(45))*cos(90-50)},{(2-cos(45))*sin(90-50)},{cos(80)}) circle (1mm);
\end{axis}
```