vault backup: 2023-03-01 10:15:26
This commit is contained in:
18
TC/ALGEBRA BOOLE'a.md
Normal file
18
TC/ALGEBRA BOOLE'a.md
Normal file
@@ -0,0 +1,18 @@
|
||||
# Aksjomaty algebry boola
|
||||
1. $(\bar 0 = 1) \cap (\bar 1 = 0)$
|
||||
2. $\forall x\in B (x+1=1) \cap (x \cdot 1 = x)$
|
||||
3. $\forall x\in B (x+0=x) \cap (x \cdot 0 = 0)$
|
||||
4. $(x + \bar x = 1) \cap (x \cdot \bar x = 0)$
|
||||
5. $(x+x=x)\cap (x\cdot x = x)$
|
||||
6. $\bar{\bar x} = x$
|
||||
7. $\forall x,y \in B\ \ (\overline{x+y}=\bar{x}\cdot \bar{y})\cap (\overline{xy}=\bar{x}+\bar{y})$ prawo de morgana
|
||||
8. $(x+y = y+x) \cap (x\cdot y = y \cdot x)$
|
||||
9. $x+(y+z)=(x+y)+z\cap x(yz)=(xy)z$
|
||||
10. $x(y+z)=xy+xz\cap x+(yz)=x+y \cdot x+z$
|
||||
|
||||
# Prawa Pochłaniania
|
||||
1. $x+xy=x \cap x(x+y)=x$
|
||||
2. $\forall x,y \in B [x+\bar x y = x+y]\cap[x(\bar x+y)=xy]$
|
||||
|
||||
# Prawo Wklejania
|
||||
1. $(yx+\bar x=y)\cap[(y+x)(y+\bar x)=y]$
|
||||
Reference in New Issue
Block a user