# Wyznaczyć pochodne podanych funkcji. ## 1 $y=(3-x^{4})^{2}$ $y'=2(3-x^{4})\cdot(-4x^{3})=(6-2x^{4})\cdot(-4x^{3})=-24x^{3}+8x^{7}$ ## 2 $y=1-\frac{4}{x^6}+\frac{3}{x^7}$ $y'=-4\cdot-6x^{-7}+3\cdot-7x^{-8}=\frac{24}{x^{7}}-\frac{21}{x^{8}}$ ## 3 $y=\cfrac{x^{2}+4}{x}$ $y'=\cfrac{1}{x^{2}}\cdot\left(2x^{2}-(x^{2}+4)\right)=\cfrac{x^{2}-4}{x^{2}}=1-\cfrac{4}{x^2}$ ## 4 $y=\cfrac{x-3}{x^{2}}$ $y'=\cfrac{1}{x^{4}}\cdot\left(x^{2}-2x^{2}+6x\right)=\cfrac{6x-x^{2}}{x^{4}}=\cfrac{6-x}{x^3}$ ## 5 $y=(\sqrt[4]{x}-\frac{1}{2})^{2}$ $y=(x^{\frac{1}{4}}-\frac{1}{2})^{2}$ $y'=2(\sqrt[4]{x}-\frac{1}{2})\cdot\frac{1}{4}{x}^{-\frac{3}{4}}=2(\sqrt[4]{x}-\frac{1}{2})\cdot\frac{1}{16\sqrt{x^{3}}}=\frac{2\sqrt[4]{x}-1}{16\sqrt{x^{3}}}$ ## 6 ## 7 $y=\cfrac{x^{5}+x^{3}+x}{\sqrt{x}}$ $y'=\cfrac{1}{x}\left((x^{5}+x^{3}+x)\cdot\frac{1}{2\sqrt{x}}-(5x^{4}+3x^2+1)\cdot\sqrt{x}\right)$ ## 8 $y=\sqrt[3]{\sqrt{x}x}$ $y'=\frac-{1}{3}$ ## 9 ## 10 $y=x\cos x$ $y'=\cos x \cdot x-\sin x$ ## 11 $y=x^{2}\sin x + \tan x$ $y'=2x(\sin x)\cdot x^2\cos x+\frac{1}{\cos^{2}x}$ ## 12 $y=\cfrac{\sin x}{x^3}$ $y'=\frac{1}{x^{6}}\cdot \left(\sin x\cdot 3x^{2}-\cos x\cdot x^{3}\right)$ $y'=\cfrac{\left(\sin x\cdot 3x^{2}-\cos x\cdot x^{3}\right)}{x^6}$ $y'=\frac{3\sin x}{x^4}-\frac{\cos x}{x^{3}}$ ## 13 $y=\sqrt{x}\ln x$ $y'=-\cfrac{1}{2\sqrt{x}}\cdot \ln x + \cfrac{1}{x}\cdot\sqrt{x}$ $y'=\cfrac{\sqrt{x}}{x}-\cfrac{\ln x}{2\sqrt{x}}$