# Aksjomaty algebry boola 1. $(\bar 0 = 1) \cap (\bar 1 = 0)$ 2. $(x+1=1) \cap (x \cdot 1 = x)$ - 1 elementem neutralnym dla iloczynu 3. $(x+0=x) \cap (x \cdot 0 = 0)$ - 0 elementem neutralnym dla sumy 4. $(x + \bar x = 1) \cap (x \cdot \bar x = 0)$ - Prawo negacji 5. $(x+x=x)\cap (x\cdot x = x)$ - Prawo idempotentności 6. $\bar{\bar x} = x$ 7. $(\overline{x+y}=\bar{x}\cdot \bar{y})\cap (\overline{xy}=\bar{x}+\bar{y})$ - Prawo de morgana - $\overline{\bar{a}\cdot\bar{b}}=a+b$ 8. $(x+y = y+x) \cap (x\cdot y = y \cdot x)$ - Prawo przemienności iloczynu/sumy 9. $x+(y+z)=(x+y)+z\cap x(yz)=(xy)z$ 10. $x(y+z)=xy+xz\cap x+(yz)=x+y \cdot x+z$ - Rozdzielność iloczynu względem sumy # Prawa Pochłaniania 1. $x+xy=x \cap x(x+y)=x$ 2. $\forall x,y \in B [x+\bar x y = x+y]\cap[x(\bar x+y)=xy]$ # Prawo Wklejania 1. $(yx+\bar x=y)\cap[(y+x)(y+\bar x)=y]$ %%za a+a=a^2 ban na życie%%