$K(S)=\frac{1}{1+ST}$ $K(j\omega)=\frac{1}{1+j\omega T}$ $|K(j\omega)|=K(\omega)=K=\frac{1}{\sqrt{1^{2}+(\omega T)^{2}}}$ $\phi(\omega)=0\degree - \arctan(\frac{\omega T}{1})$ |-|$K$|$\phi$| |-|-|-| |$\omega=0$|$1$|$0\degree$| |$\omega=\frac{1}{T}$|$\frac{1}{\sqrt{2}}$|$-45\degree$| |$\omega\rightarrow\infty$|$0$|$-90\degree$|