# Korzystając z różniczki wyznaczyć przybliżoną wartość wyrażenia. ## 1 $\sqrt{2.01^{4}+9}=\left.5+df\right|_{(x_{0})}$ $x_0=2$ $\Delta x = 0.01$ $f(x)=\sqrt{x^4+9}$ $f'(x)=\frac{1}{2\sqrt{x^{4}+9}}\cdot4x^{3}$ $f'(x_{0})=3.2$ $\left.df\right|_{x_{0}}=3.2\cdot0.01=0.032$ $\sqrt{2.01^{4}+9}\approx5.032$ ## 2 $(0.98^{2}+2)^3=27+\left.df\right|_{(x_{0})}$ $x_{0}=1$ $\Delta x=-0.02$ $f(x)=(x^{2}+2)^3$ $f'(x)=3(x^{2}+2)^{2}\cdot2x$ $f'(x_{0})=54$ $\left.df\right|_{x_{0}}=54\cdot(-0.02)=-1.08$ $(0.98^{2}+2)^{3}=27+(-1.08)=25.92$ ## 3 $\cfrac{4\cdot2.03+1}{2.03^{2}-2}=\frac{9}{2}+\left.df\right|_{(x_{0})}$ $x_{0}=2$ $\Updelta x=0.03$ $f(x)=\cfrac{4x+1}{x^{2}-2}$ $f'(x)=\cfrac{1}{\left(x^{2}-2\right)^{2}}\cdot\left(4\cdot(x^{2}-2)-(4x+1)\cdot2x\right)$ $f'(x_{0})=-\cfrac{28}{4}=-7$ $\left.df\right|_{(x_{0})}=-7\cdot0.03=-0.21$ $\cfrac{4\cdot2.03+1}{2.03^{2}-2}=4.5+(-0.21)=4.29$ ## 4 $\ln(1+\ln 1.01)=0+\left.df\right|_{x_{0}}$ $f(x)=\ln(1+\ln x)$ $x_{0}=1$ $\Delta x=0.01$ $f'(x)=\cfrac{1}{1+\ln x}\cdot\cfrac{1}{x}$ $f'(x_{0})=1$ $\left.df\right|_{x_{0}}=0.01$ $\ln(1+\ln 1.01)=0+0.01=0.01$ ## 5 $0.99\cdot\cos(0.99\pi)=-1+\left.df\right|_{x_{0}}$ $f(x)=x\cdot\cos(x\pi)$ $x_0=1$ $\Delta x = -0.01$ $f'(x)=cos(x\pi)+x\cdot(-\sin(\pi x)\cdot\pi)$ $f'(x_{0})=\cos(\pi)-\pi(\sin\pi)=-1$ $\left.df\right|_{x_{0}}=-1\cdot(-0.01)=0.01$ $0.99\cdot\cos(0.99\pi)=-0.99$