$$ \begin{gathered} f(x)=\begin{cases} \cfrac{2x^{2}-x-1}{x-1} &x\ne1\\ -1 &x = 1 \end{cases}\\\\\\ D_{f}=\mathbb{R}\\ \lim_{x\rightarrow1}\frac{2x^{2}-x-1}{x-1}=^{[\frac{0}{0}]}\lim_{x\rightarrow1}\frac{2(x-1)(x+\frac{1}{2})}{x-1}=\lim_{x\rightarrow1}2x+1=3\\ f(1)=-1\\ \Delta=1+8\\ \sqrt{\Delta}=3\\ x_{1}=1\\ x_{2}= -\frac{1}{2} \end{gathered} $$