# Aksjomaty algebry boola 1. $(\bar 0 = 1) \cap (\bar 1 = 0)$ 2. $(x+1=1) \cap (x \cdot 1 = x)$ - 1 elementem neutralnym dla iloczynu 3. $(x+0=x) \cap (x \cdot 0 = 0)$ - 0 elementem neutralnym dla sumy 4. $(x + \bar x = 1) \cap (x \cdot \bar x = 0)$ - Prawo negacji 5. $(x+x=x)\cap (x\cdot x = x)$ - Prawo idempotentności 6. $\bar{\bar x} = x$ 7. $(\overline{x+y}=\bar{x}\cdot \bar{y})\cap (\overline{xy}=\bar{x}+\bar{y})$ - Prawo de morgana - $\overline{\bar{a}\cdot\bar{b}}=a+b$ 8. $(x+y = y+x) \cap (x\cdot y = y \cdot x)$ - Prawo przemienności iloczynu/sumy 9. $x+(y+z)=(x+y)+z\cap x(yz)=(xy)z$ 10. $x(y+z)=xy+xz\cap x+(yz)=x+y \cdot x+z$ - Rozdzielność iloczynu względem sumy # Prawa Pochłaniania 1. $x+xy=x \cap x(x+y)=x$ 2. $\forall x,y \in B [x+\bar x y = x+y]\cap[x(\bar x+y)=xy]$ # Prawo Wklejania 1. $(yx+\bar x=y)\cap[(y+x)(y+\bar x)=y]$ %%za a+a=a^2 ban na życie%% ``` \documentclass{article} \usepackage[rgb]{xcolor} \usepackage{karnaugh-map} \usepackage{pgfplots} \pgfplotsset{compat=1.16} \definecolor{mycolor0000}{HTML}{F70400} \definecolor{mycolor0100}{HTML}{AA0154} \definecolor{mycolor1100}{HTML}{5600AB} \definecolor{mycolor1000}{HTML}{0003FB} \definecolor{mycolor0001}{HTML}{FF5500} \definecolor{mycolor0101}{HTML}{AA5455} \definecolor{mycolor1101}{HTML}{5555AB} \definecolor{mycolor1001}{HTML}{0055FE} \definecolor{mycolor0011}{HTML}{FFAA01} \definecolor{mycolor0111}{HTML}{AAA956} \definecolor{mycolor1111}{HTML}{56AAAA} \definecolor{mycolor1011}{HTML}{00AAFF} \definecolor{mycolor0010}{HTML}{FEFF02} \definecolor{mycolor0110}{HTML}{A9FF54} \definecolor{mycolor1110}{HTML}{55FFAA} \definecolor{mycolor1010}{HTML}{0FF6FF} \pgfplotsset{colormap={BR}{% color(0)=(mycolor0000) color(1)=(mycolor0100) color(2)=(mycolor1100) color(3)=(mycolor1000) color(4)=(mycolor0001) color(5)=(mycolor0101) color(6)=(mycolor1101) color(7)=(mycolor1001) color(8)=(mycolor0011) color(9)=(mycolor0111) color(10)=(mycolor1111) color(11)=(mycolor1011) color(12)=(mycolor0010) color(13)=(mycolor0110) color(14)=(mycolor1110) color(15)=(mycolor1010) }} \begin{document} \begin{tikzpicture}[font=\small\sffamily] \begin{axis} [hide axis,shader=flat corner,%colormap name=BR, plot box ratio = 1 6 1, view = {0}{15}] \addplot3[surf, samples=32,point meta={int(mod(-atan2(y,x)+45+360,360)/90)+ 4*int(mod(atan2(z,sqrt(x^2+y^2)-2)+360+180,360)/90) },domain=0:360,y domain=0:360, z buffer=sort] ({(2+cos(x))*cos(y+90)}, {(2+cos(x))*sin(y+90)}, {sin(x)}); \node at ({(2+cos(45))*cos(-90)},{(2+cos(45))*sin(-90)},{cos(45)}) {0111}; \node at ({(2+cos(45))*cos(-90)},{(2+cos(45))*sin(-90)},{0.15-cos(45)}) {0101}; \fill ({(2-cos(45))*cos(90-50)},{(2-cos(45))*sin(90-50)},{cos(80)}) circle (1mm); \end{axis} \end{tikzpicture} % \begin{karnaugh-map}[4][4][1][][] \end{karnaugh-map} \end{document} ``` ```tikz \usepackage{karnaugh} \usepackage{pgfplots} \begin{axis} [hide axis,shader=flat corner, plot box ratio = 1 6 1, view = {0}{15}] \addplot3[surf, samples=32,point meta={int(mod(-atan2(y,x)+45+360,360)/90)+ 4*int(mod(atan2(z,sqrt(x^2+y^2)-2)+360+180,360)/90) },domain=0:360,y domain=0:360, z buffer=sort] ({(2+cos(x))*cos(y+90)}, {(2+cos(x))*sin(y+90)}, {sin(x)}); \node at ({(2+cos(45))*cos(-90)},{(2+cos(45))*sin(-90)},{cos(45)}) {0111}; \node at ({(2+cos(45))*cos(-90)},{(2+cos(45))*sin(-90)},{0.15-cos(45)}) {0101}; \fill ({(2-cos(45))*cos(90-50)},{(2-cos(45))*sin(90-50)},{cos(80)}) circle (1mm); \end{axis} ```