# Obliczyć pole obszaru zawartego między wykresami funkcji $f$ oraz $g$. ## 1. $$\begin{gathered} f(x)=x^{2}\\ g(x)=x\\ \\ x-x^{2}=0 \\ \int^{1}_{0}x-x^{2}dx=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{2}-{\frac{1}{3}}=\frac{1}{6} \end{gathered}$$ ```desmos-graph left=-4; right=4; top=4; bottom=-4; --- f(x)=x^2 g(x)=x ``` ## 2. $$\begin{gather} f(x)=x^{2}\\ g(x)=3-x^{2}\\ 3-x^{2}-x^{2}=3-2x^{2}=0\\ \Delta=24\\ \sqrt{\Delta}=2\sqrt{6}\\ x=\pm\frac{\sqrt{6}}{2}\\ \int^{\frac{\sqrt{6}}{2}}_{-\frac{\sqrt{6}}{2}}3-2x^{2}dx=\left[3x- \frac{2x^{3}}{3}\right]^{\frac{\sqrt{6}}{2}}_{-\frac{\sqrt{6}}{2}}=\frac{3\sqrt{6}}{2}- \frac{12\sqrt{6}}{3}-\left(-\frac{3\sqrt{6}}{2}+\frac{12\sqrt{6}}{3}\right)=\\=\frac{6\sqrt{6}}{2}- \frac{24\sqrt{6}}{3}=3\sqrt{6}-8\sqrt{6}=-5\sqrt{6} \end{gather}$$ ```desmos-graph left=-4; right=4; top=4; bottom=-4; --- f(x)=x^2 g(x)=3-x^2 ```