# Na podstawie definicji obliczyć pochodną funkcji f w podanym punkcie $x_0$. ## 1 $f(x)=2x-x^{2},gdzie\ x_0=1$ $f'(x)=2-2x$ $f'(x_{0})=0$ ## 2 $f(x)=x^{2}-7x,gdzie\ x_{0}=0$ $f'(x)=2x-7$ $f'(x_{0})=-7$ ## 3 $f(x)=x^{3},x_{0}=1$ $f'(x)=3x^2$ $f'(x_{0})=3$ ## 4 $f(x)=-2x^{3}+x, x_{0}=-1$ $f'(x)=-6x^{2}+1$ $f'(x_{0})=-5$ ## 5 $f(x)=-\sqrt{x+2},\ x_{0}=2$ $f(x)=-(x+2)^{\frac{1}{2}},\ x_{0}=2$ $f'(x)=-\frac{1}{2\sqrt{x+2}}$ $f'(x_{0})=-\frac{1}{4}$ ## 6 $f(x)=\sqrt{1+2x},\ x_{0}=4$ $f(x)=(1+2x)^{\frac{1}{2}}$ $f'(x)=\cfrac{\frac{1}{2\sqrt{1+2x}}}{2}$ $f'(x_{0})=\frac{1}{3}$ ## 7 $f(x)=3+2\sqrt{4x-1},\ x_{0}=2\frac{1}{2}$ $f'(x)=2\cdot \frac{1}{2\sqrt{4x-1}}\cdot 4$ $f'(x_{0})=\frac{4}{3}$ ## 8 $f(x)=\frac{1}{x^{2}},\ x_{0}=1$ $f'(x)=-\frac{2}{x^3}$ $f'(x_{0})=-2$ ## 9 $f(x)=\frac{2}{x^{3}},\ x_{0}=-1$ $f(x)=2(x^{-3})$ $f'(x)=-\frac{6}{x^{4}}$ $f'(x_{0})=-6$ ## 10 $f(x)=\sqrt{x^{2}-1},\ x_{0}=-3$ $f'(x)=\cfrac{1}{2\sqrt{x^{2}-1}} \cdot 2x$ $f'(x_{0})=\frac{-6}{4\sqrt{2}}=\frac{-3}{2\sqrt{2}}$ ## 11 $f(x)=\sqrt{2x^{2}+1},\ x_{0}=2$ $f'(x)=\cfrac{1}{2\sqrt{2x^{2}+1}} \cdot 4x$ $f'(x_{0})=\frac{4}{3}$ ## 12 $f(x)=\sin{x},\ x_{0}=\frac{\pi}{2}$ $f'(x)=\cos x$ $f'(x_{0})=0$ ## 13 $f(x)=\cos{x},\ x_{0}=\frac{\pi}{2}$ $f'(x)=-\sin x$ $f'(x_{0})=-1$ ## 14 $f(x)=\sin{x^2},\ x_{0}=0$ $f'(x)=\cos x^{2}\cdot 2x$ $f'(x_{0})=0$ ## 15 $f(x)=\sin\sqrt{x},\ x_{0}=0$ $f'(x)=\cos\sqrt{x}\cdot\frac{1}{2\sqrt{x}}$ $f'(x_{0})=1\cdot\frac{1}{0}=brak\ rozwiązania$