316 B
316 B
\begin{gathered}
f(x)=\frac{x^{2}-2x}{x^{2}-3x+2} \\\\
D_{f}=\mathbb{R} \setminus \{ 1, 2 \} \\
x^{2}-3x+2\ne0 \\
(x-1)(x-2)\ne0 \\
x\ne1\ \ \ \ x\ne2 \\
D_{f}\in(-\infty, 1) \cup (1,2) \cup (2,\infty)\\
\lim_{x\rightarrow1}=
granica\ pionowa\ obustronna\ w\ 1
\end{gathered}