681 B
681 B
Aksjomaty algebry boola
(\bar 0 = 1) \cap (\bar 1 = 0)\forall x\in B (x+1=1) \cap (x \cdot 1 = x)\forall x\in B (x+0=x) \cap (x \cdot 0 = 0)(x + \bar x = 1) \cap (x \cdot \bar x = 0)(x+x=x)\cap (x\cdot x = x)\bar{\bar x} = x\forall x,y \in B\ \ (\overline{x+y}=\bar{x}\cdot \bar{y})\cap (\overline{xy}=\bar{x}+\bar{y})prawo de morgana(x+y = y+x) \cap (x\cdot y = y \cdot x)x+(y+z)=(x+y)+z\cap x(yz)=(xy)zx(y+z)=xy+xz\cap x+(yz)=x+y \cdot x+z
Prawa Pochłaniania
x+xy=x \cap x(x+y)=x\forall x,y \in B [x+\bar x y = x+y]\cap[x(\bar x+y)=xy]
Prawo Wklejania
(yx+\bar x=y)\cap[(y+x)(y+\bar x)=y]