Files
Polsl-Notes/AMiAL/ICT/Ćwiczenia/Zadania/Pochodne/Zadanie 1.md

1.4 KiB

Na podstawie definicji obliczyć pochodną funkcji f w podanym punkcie x_0.

1

f(x)=2x-x^{2},gdzie\ x_0=1 f'(x)=2-2x f'(x_{0})=0

2

f(x)=x^{2}-7x,gdzie\ x_{0}=0 f'(x)=2x-7 f'(x_{0})=-7

3

f(x)=x^{3},x_{0}=1 f'(x)=3x^2 f'(x_{0})=3

4

f(x)=-2x^{3}+x, x_{0}=-1 f'(x)=-6x^{2}+1 f'(x_{0})=-5

5

f(x)=-\sqrt{x+2},\ x_{0}=2 f(x)=-(x+2)^{\frac{1}{2}},\ x_{0}=2 f'(x)=-\frac{1}{2\sqrt{x+2}} f'(x_{0})=-\frac{1}{4}

6

f(x)=\sqrt{1+2x},\ x_{0}=4 f(x)=(1+2x)^{\frac{1}{2}} f'(x)=\cfrac{\frac{1}{2\sqrt{1+2x}}}{2} f'(x_{0})=\frac{1}{3}

7

f(x)=3+2\sqrt{4x-1},\ x_{0}=2\frac{1}{2} f'(x)=2\cdot \frac{1}{2\sqrt{4x-1}}\cdot 4 f'(x_{0})=\frac{4}{3}

8

f(x)=\frac{1}{x^{2}},\ x_{0}=1 f'(x)=-\frac{2}{x^3} f'(x_{0})=-2

9

f(x)=\frac{2}{x^{3}},\ x_{0}=-1 f(x)=2(x^{-3}) f'(x)=-\frac{6}{x^{4}} f'(x_{0})=-6

10

f(x)=\sqrt{x^{2}-1},\ x_{0}=-3 f'(x)=\cfrac{1}{2\sqrt{x^{2}-1}} \cdot 2x f'(x_{0})=\frac{-6}{4\sqrt{2}}=\frac{-3}{2\sqrt{2}}

11

f(x)=\sqrt{2x^{2}+1},\ x_{0}=2 f'(x)=\cfrac{1}{2\sqrt{2x^{2}+1}} \cdot 4x f'(x_{0})=\frac{4}{3}

12

f(x)=\sin{x},\ x_{0}=\frac{\pi}{2} f'(x)=\cos x f'(x_{0})=0

13

f(x)=\cos{x},\ x_{0}=\frac{\pi}{2} f'(x)=-\sin x f'(x_{0})=-1

14

f(x)=\sin{x^2},\ x_{0}=0 f'(x)=\cos x^{2}\cdot 2x f'(x_{0})=0

15

f(x)=\sin\sqrt{x},\ x_{0}=0 f'(x)=\cos\sqrt{x}\cdot\frac{1}{2\sqrt{x}} f'(x_{0})=1\cdot\frac{1}{0}=brak\ rozwiązania