mirror of
https://github.com/VectorKappa/dotfiles.git
synced 2025-12-19 00:06:12 +01:00
Compare commits
2 Commits
fc0d1dca35
...
bb7ec3345a
| Author | SHA1 | Date | |
|---|---|---|---|
|
bb7ec3345a
|
|||
|
cfa77fcdb4
|
@@ -1,6 +1,6 @@
|
||||
#!/bin/zsh
|
||||
#!/bin/dash
|
||||
|
||||
if [ "$(pgrep -cx autogap)" -gt 1 ] ; then
|
||||
if [ "$(pgrep -cx autogap)" -gt 1 ] ; then
|
||||
killall autogap && exit 0
|
||||
else
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/sh
|
||||
#!/bin/dash
|
||||
i=1
|
||||
case $1 in
|
||||
dsktp) # Add or remove a desktop
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
#!/bin/zsh
|
||||
#!/bin/dash
|
||||
|
||||
if [ "$(pgrep -cx euclid_balancer)" -gt 1 ] ; then
|
||||
if [ "$(pgrep -cx euclid_balancer)" -gt 1 ] ; then
|
||||
killall euclid_balancer && exit 0
|
||||
else
|
||||
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
#! /bin/bash
|
||||
#!/bin/dash
|
||||
# Run program unless it's already running
|
||||
pgrep $@ > /dev/null || ($@ &)
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
#!/bin/zsh
|
||||
#!/bin/dash
|
||||
pgrep -axf $1 >/dev/null && pkill -xf $1 || eval $1 &
|
||||
exit 0
|
||||
|
||||
8
bin/whid
8
bin/whid
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/bin/dash
|
||||
file="/tmp/.minimized"
|
||||
touch $file
|
||||
# By https://github.com/tatou-tatou
|
||||
@@ -45,14 +45,14 @@ dmenu)
|
||||
# Comment that line if you use vanilla dmenu.
|
||||
yPos=$((410-$linesDisplayed*10))
|
||||
|
||||
|
||||
|
||||
# Uncomment only one line with dmenu_cmd
|
||||
# If you use rofi
|
||||
dmenu_cmd="rofi -lines $linesDisplayed -dmenu -p Hidden:"
|
||||
|
||||
|
||||
# If you use dmenu, patched with eye candy
|
||||
# dmenu_cmd="dmenu -l 9 -x $left_shift -y $top_shift -w $bar_width -fn sans-11 -nb #201F1D -nf #eddec9 -sb #8F3724 -sf #EDDEC9 -p Hidden:"
|
||||
|
||||
|
||||
# If you use vanilla dmenu
|
||||
# dmenu_cmd="dmenu -b -i -l $linesDisplayed -p Hidden:"
|
||||
|
||||
|
||||
@@ -1,65 +0,0 @@
|
||||
// The Nord colorscheme is used by default,
|
||||
// but you can make your own by changing `colors`
|
||||
|
||||
uniform float opacity;
|
||||
uniform float time;
|
||||
uniform bool invert_color;
|
||||
uniform sampler2D tex;
|
||||
|
||||
float sin_rand() {
|
||||
return sin(gl_FragCoord.x + cos(gl_FragCoord.y));
|
||||
}
|
||||
|
||||
float random(float seedChange) {
|
||||
vec2 seed = gl_FragCoord.xy + sin(seedChange);
|
||||
return fract(dot(vec2(sin(mod(seed.x / cos(seed.y), 5.0) * 10000.0)), vec2(1.1, 12.2)));
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 c = texture2D(tex, gl_TexCoord[0].xy);
|
||||
vec4 d = c;
|
||||
vec3 colors[16];
|
||||
colors[0 ] = vec3(0.286,0.302,0.392);
|
||||
colors[1 ] = vec3(0.929,0.529,0.588);
|
||||
colors[2 ] = vec3(0.651,0.855,0.584);
|
||||
colors[3 ] = vec3(0.933,0.831,0.624);
|
||||
colors[4 ] = vec3(0.541,0.678,0.957);
|
||||
colors[5 ] = vec3(0.961,0.741,0.902);
|
||||
colors[6 ] = vec3(0.545,0.835,0.792);
|
||||
colors[7 ] = vec3(0.722,0.753,0.878);
|
||||
colors[8 ] = vec3(0.357,0.376,0.471);
|
||||
colors[9 ] = vec3(0.926,0.529,0.588);
|
||||
colors[10] = vec3(0.651,0.855,0.584);
|
||||
colors[11] = vec3(0.933,0.831,0.624);
|
||||
colors[12] = vec3(0.541,0.678,0.957);
|
||||
colors[13] = vec3(0.961,0.741,0.902);
|
||||
colors[14] = vec3(0.545,0.835,0.792);
|
||||
colors[15] = vec3(0.647,0.678,0.796);
|
||||
|
||||
float mindist = 100.0;
|
||||
int minind = 0;
|
||||
float mindist2 = 100.0;
|
||||
int minind2 = 0;
|
||||
for (int i = 0; i < 16; i++) {
|
||||
float dist = length(c.xyz - colors[i]);
|
||||
if (dist < mindist) {
|
||||
mindist2 = mindist;
|
||||
mindist = dist;
|
||||
minind2 = minind;
|
||||
minind = i;
|
||||
}
|
||||
}
|
||||
float ratio = mindist / (mindist + mindist2);
|
||||
float r = random(1.0) * 0.4 + 0.25;
|
||||
if (r > ratio)
|
||||
c.xyz = colors[minind];
|
||||
else
|
||||
c.xyz = colors[minind2];
|
||||
|
||||
c.xyz = mix(mix(colors[minind], colors[minind2], ratio), c.xyz, 0.5);
|
||||
|
||||
if (invert_color)
|
||||
c = vec4(vec3(c.a, c.a, c.a) - vec3(c), c.a);
|
||||
c *= opacity;
|
||||
gl_FragColor = vec4(c);
|
||||
}
|
||||
@@ -1,65 +0,0 @@
|
||||
// The Nord colorscheme is used by default,
|
||||
// but you can make your own by changing `colors`
|
||||
|
||||
uniform float opacity;
|
||||
uniform float time;
|
||||
uniform bool invert_color;
|
||||
uniform sampler2D tex;
|
||||
|
||||
float sin_rand() {
|
||||
return sin(gl_FragCoord.x + cos(gl_FragCoord.y));
|
||||
}
|
||||
|
||||
float random(float seedChange) {
|
||||
vec2 seed = gl_FragCoord.xy + sin(seedChange);
|
||||
return fract(dot(vec2(sin(mod(seed.x / cos(seed.y), 5.0) * 10000.0)), vec2(1.1, 12.2)));
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 c = texture2D(tex, gl_TexCoord[0].xy);
|
||||
vec4 d = c;
|
||||
vec3 colors[16];
|
||||
colors[0 ] = vec3(0.18 ,0.204,0.251);
|
||||
colors[1 ] = vec3(0.231,0.259,0.322);
|
||||
colors[2 ] = vec3(0.263,0.298,0.369);
|
||||
colors[3 ] = vec3(0.298,0.337,0.416);
|
||||
colors[4 ] = vec3(0.847,0.871,0.914);
|
||||
colors[5 ] = vec3(0.898,0.914,0.941);
|
||||
colors[6 ] = vec3(0.925,0.937,0.957);
|
||||
colors[7 ] = vec3(0.561,0.737,0.733);
|
||||
colors[8 ] = vec3(0.533,0.753,0.816);
|
||||
colors[9 ] = vec3(0.506,0.631,0.757);
|
||||
colors[10] = vec3(0.369,0.506,0.675);
|
||||
colors[11] = vec3(0.749,0.38 ,0.416);
|
||||
colors[12] = vec3(0.816,0.529,0.439);
|
||||
colors[13] = vec3(0.922,0.796,0.545);
|
||||
colors[14] = vec3(0.639,0.745,0.549);
|
||||
colors[15] = vec3(0.706,0.557,0.678);
|
||||
|
||||
float mindist = 100.0;
|
||||
int minind = 0;
|
||||
float mindist2 = 100.0;
|
||||
int minind2 = 0;
|
||||
for (int i = 0; i < 16; i++) {
|
||||
float dist = length(c.xyz - colors[i]);
|
||||
if (dist < mindist) {
|
||||
mindist2 = mindist;
|
||||
mindist = dist;
|
||||
minind2 = minind;
|
||||
minind = i;
|
||||
}
|
||||
}
|
||||
float ratio = mindist / (mindist + mindist2);
|
||||
float r = random(1.0) * 0.4 + 0.25;
|
||||
if (r > ratio)
|
||||
c.xyz = colors[minind];
|
||||
else
|
||||
c.xyz = colors[minind2];
|
||||
|
||||
c.xyz = mix(mix(colors[minind], colors[minind2], ratio), c.xyz, 0.5);
|
||||
|
||||
if (invert_color)
|
||||
c = vec4(vec3(c.a, c.a, c.a) - vec3(c), c.a);
|
||||
c *= opacity;
|
||||
gl_FragColor = vec4(c);
|
||||
}
|
||||
@@ -1,33 +0,0 @@
|
||||
#version 130
|
||||
#extension GL_ARB_shading_language_420pack: enable
|
||||
|
||||
#define CYCLE 5000 // The amount of miliseconds it takes to do a full "loop" around all the colors.
|
||||
|
||||
uniform float opacity;
|
||||
uniform bool invert_color;
|
||||
uniform sampler2D tex;
|
||||
uniform float time;
|
||||
|
||||
float get_decimal_part(float f) {
|
||||
return f - int(f);
|
||||
}
|
||||
|
||||
float snap0(float f) {
|
||||
return (f < 0) ? 0 : f;
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 c = texture2D(tex, gl_TexCoord[0].xy);
|
||||
float f = get_decimal_part(time / CYCLE);
|
||||
|
||||
gl_FragColor.a = 1;
|
||||
|
||||
float p[3] = {
|
||||
snap0(0.33 - abs(f - 0.33)) * 4,
|
||||
snap0(0.33 - abs(f - 0.66)) * 4,
|
||||
snap0(0.33 - abs(f - 1.00)) * 4 + snap0(0.33 - abs(f - 0.0)) * 4
|
||||
};
|
||||
gl_FragColor.r = p[0] * c.r + p[1] * c.g + p[2] * c.b;
|
||||
gl_FragColor.g = p[2] * c.r + p[0] * c.g + p[1] * c.b;
|
||||
gl_FragColor.b = p[1] * c.r + p[2] * c.g + p[0] * c.b;
|
||||
}
|
||||
@@ -17,5 +17,6 @@ vec4 window_shader() {
|
||||
if (invert_color)
|
||||
c = vec4(vec3(c.a, c.a, c.a) - vec3(c), c.a);
|
||||
c *= opacity;
|
||||
vec4 default_post_processing(vec4 c);
|
||||
return c;
|
||||
}
|
||||
|
||||
22
picom/.config/picom/green_to_jerma.frag
Normal file
22
picom/.config/picom/green_to_jerma.frag
Normal file
@@ -0,0 +1,22 @@
|
||||
#version 330
|
||||
in vec2 texcoord;
|
||||
uniform float opacity;
|
||||
uniform bool invert_color;
|
||||
uniform sampler2D tex;
|
||||
|
||||
vec4 window_shader() {
|
||||
vec4 c = texelFetch(tex, ivec2(texcoord), 0);
|
||||
{
|
||||
// Change vec4(1.0, 1.0, 1.0, 1.0) to your desired color
|
||||
vec4 vdiff = abs(vec4(0.0, 0.0, 0.0, 1.0) - c);
|
||||
float diff = max(max(max(vdiff.r, vdiff.g), vdiff.b), vdiff.a);
|
||||
// Change 0.8 to your desired opacity
|
||||
if (diff < 0.001)
|
||||
c *= 0;
|
||||
}
|
||||
if (invert_color)
|
||||
c = vec4(vec3(c.a, c.a, c.a) - vec3(c), c.a);
|
||||
c *= opacity;
|
||||
vec4 default_post_processing(vec4 c);
|
||||
return c;
|
||||
}
|
||||
@@ -132,7 +132,7 @@ focus-exclude = [ "class_g = 'Cairo-clock'" ];
|
||||
# Sets the radius of rounded window corners. When > 0, the compositor will
|
||||
# round the corners of windows. Does not interact well with
|
||||
# `transparent-clipping`.
|
||||
corner-radius = 3
|
||||
corner-radius = 9
|
||||
|
||||
# Exclude conditions for rounded corners.
|
||||
rounded-corners-exclude = [
|
||||
@@ -169,11 +169,11 @@ opacity-rule = [
|
||||
|
||||
# Exclude conditions for background blur.
|
||||
# blur-background-exclude = []
|
||||
blur-background-exclude = [
|
||||
"window_type = 'dock'",
|
||||
"window_type = 'desktop'",
|
||||
"_GTK_FRAME_EXTENTS@:c"
|
||||
];
|
||||
#blur-background-exclude = [
|
||||
# "window_type = 'dock'",
|
||||
# "window_type = 'desktop'",
|
||||
# "_GTK_FRAME_EXTENTS@:c"
|
||||
#];
|
||||
|
||||
#################################
|
||||
# General Settings #
|
||||
@@ -298,7 +298,13 @@ use-damage = true;
|
||||
# to opacity-rule. SHADER_PATH can be "default". This overrides window-shader-fg.
|
||||
#
|
||||
window-shader-fg-rule = [
|
||||
"black_to_transparent.frag:class_g = 'stalonetray'"
|
||||
"black_to_transparent.frag:class_g = 'stalonetray'",
|
||||
"black_to_transparent.frag:class_g = 'Minecraft 1.7.10'",
|
||||
"black_to_transparent.frag:focused = true",
|
||||
"black_to_transparent.frag:focused != true",
|
||||
#"sphere.glsl:focused != true"
|
||||
#"nordify.glsl:class_g = 'miru'"
|
||||
|
||||
]
|
||||
|
||||
# Force all windows to be painted with blending. Useful if you
|
||||
|
||||
372
picom/.config/picom/sphere.glsl
Normal file
372
picom/.config/picom/sphere.glsl
Normal file
@@ -0,0 +1,372 @@
|
||||
#version 430
|
||||
#define PI 3.14159265
|
||||
|
||||
// These shaders work by using a pinhole camera and raycasting
|
||||
// The window 3d objects will always be (somewhat) centered at (0, 0, 0)
|
||||
struct pinhole_camera
|
||||
{
|
||||
float focal_offset; // Distance along the Z axis between the camera
|
||||
// center and the focal point. Use negative values
|
||||
// so the image doesn't flip
|
||||
// This kinda works like FOV in games
|
||||
|
||||
// Transformations
|
||||
// Use these to modify the coordinate system of the camera plane
|
||||
vec3 rotations; // Rotations in radians around each axis
|
||||
// The camera plane rotates around
|
||||
// its center point, not the origin
|
||||
|
||||
vec3 translations; // Translations in pixels along each axis
|
||||
|
||||
vec3 deformations; // Deforms the camera. Higher values on each axis
|
||||
// means the window will be squashed in that axis
|
||||
|
||||
// ---------------------------------------------------------------//
|
||||
|
||||
// "Aftervalues"
|
||||
// These will be set later with setup_camera(), leave them as 0
|
||||
vec3 base_x;
|
||||
vec3 base_y;
|
||||
vec3 base_z;
|
||||
vec3 center_point;
|
||||
vec3 focal_point;
|
||||
};
|
||||
|
||||
in vec2 texcoord; // texture coordinate of the fragment
|
||||
|
||||
uniform sampler2D tex; // texture of the window
|
||||
|
||||
|
||||
uniform float time; // Time in miliseconds.
|
||||
|
||||
float time_cyclic = mod(time/10000,2); // Like time, but in seconds and resets to
|
||||
// 0 when it hits 2. Useful for using it in
|
||||
// periodic functions like cos and sine
|
||||
|
||||
// Time variables can be used to change transformations over time
|
||||
|
||||
|
||||
ivec2 window_size = textureSize(tex, 0); // Size of the window
|
||||
|
||||
float window_diagonal = length(window_size); // Diagonal of the window
|
||||
//
|
||||
int wss = min(window_size.x, window_size.y); // Window smallest side, useful when squaring windows
|
||||
// Try to keep focal offset and translations proportional to window_size components
|
||||
// or window_diagonal as you see fit
|
||||
|
||||
pinhole_camera camera =
|
||||
pinhole_camera(-window_size.y/2, // Focal offset
|
||||
vec3(0,0,0), // Rotations
|
||||
vec3(0,0,0), // Translations
|
||||
vec3(1,1,1), // Deformations
|
||||
// Leave the rest as 0
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0));
|
||||
|
||||
// Here are some presets you can use
|
||||
|
||||
// Moves the camera up and down
|
||||
pinhole_camera bobbing =
|
||||
pinhole_camera(-window_size.y/2,
|
||||
vec3(0,0,0),
|
||||
vec3(0,cos(time_cyclic*PI)*window_size.y/16,-window_size.y/4),
|
||||
vec3(1,1,1),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0));
|
||||
|
||||
// Rotates camera around the origin
|
||||
// Makes the window rotate around the Y axis from the camera's POV
|
||||
// (if the window is centered)
|
||||
pinhole_camera rotate_around_origin =
|
||||
pinhole_camera(-wss,
|
||||
vec3(PI/6*sin(2*time_cyclic*PI),-time_cyclic*PI-PI/2,0),
|
||||
vec3(cos(time_cyclic*PI)*wss,
|
||||
wss/2*sin(2*time_cyclic*PI),
|
||||
sin(time_cyclic*PI)*wss),
|
||||
vec3(1,1,1),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0));
|
||||
|
||||
// Rotate camera around its center
|
||||
pinhole_camera rotate_around_itself =
|
||||
pinhole_camera(-wss,
|
||||
vec3(0,-time_cyclic*PI-PI/2,0),
|
||||
vec3(0,0,-wss),
|
||||
vec3(1,1,1),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0),
|
||||
vec3(0));
|
||||
|
||||
// Here you can select the preset to use
|
||||
pinhole_camera window_cam = rotate_around_origin;
|
||||
|
||||
|
||||
|
||||
ivec2 window_center = ivec2(window_size.x/2, window_size.y/2);
|
||||
|
||||
// Default window post-processing:
|
||||
// 1) invert color
|
||||
// 2) opacity / transparency
|
||||
// 3) max-brightness clamping
|
||||
// 4) rounded corners
|
||||
vec4 default_post_processing(vec4 c);
|
||||
|
||||
// Sets up a camera by applying transformations and
|
||||
// calculating xyz vector basis
|
||||
pinhole_camera setup_camera(pinhole_camera camera)
|
||||
{
|
||||
// Apply translations
|
||||
camera.center_point += camera.translations;
|
||||
|
||||
// Apply rotations
|
||||
// We initialize our vector basis as normalized vectors
|
||||
// in each axis * our deformations vector
|
||||
camera.base_x = vec3(camera.deformations.x, 0, 0);
|
||||
camera.base_y = vec3(0, camera.deformations.y, 0);
|
||||
camera.base_z = vec3(0, 0, camera.deformations.z);
|
||||
|
||||
|
||||
// Then we rotate them around following our rotations vector:
|
||||
// First save these values to avoid redundancy
|
||||
float cosx = cos(camera.rotations.x);
|
||||
float cosy = cos(camera.rotations.y);
|
||||
float cosz = cos(camera.rotations.z);
|
||||
float sinx = sin(camera.rotations.x);
|
||||
float siny = sin(camera.rotations.y);
|
||||
float sinz = sin(camera.rotations.z);
|
||||
|
||||
// Declare a buffer vector we will use to apply multiple changes at once
|
||||
vec3 tmp = vec3(0);
|
||||
|
||||
// Rotations for base_x:
|
||||
tmp = camera.base_x;
|
||||
// X axis:
|
||||
tmp.y = camera.base_x.y * cosx - camera.base_x.z * sinx;
|
||||
tmp.z = camera.base_x.y * sinx + camera.base_x.z * cosx;
|
||||
camera.base_x = tmp;
|
||||
// Y axis:
|
||||
tmp.x = camera.base_x.x * cosy + camera.base_x.z * siny;
|
||||
tmp.z = -camera.base_x.x * siny + camera.base_x.z * cosy;
|
||||
camera.base_x = tmp;
|
||||
// Z axis:
|
||||
tmp.x = camera.base_x.x * cosz - camera.base_x.y * sinz;
|
||||
tmp.y = camera.base_x.x * sinz + camera.base_x.y * cosz;
|
||||
camera.base_x = tmp;
|
||||
|
||||
// Rotations for base_y:
|
||||
tmp = camera.base_y;
|
||||
// X axis:
|
||||
tmp.y = camera.base_y.y * cosx - camera.base_y.z * sinx;
|
||||
tmp.z = camera.base_y.y * sinx + camera.base_y.z * cosx;
|
||||
camera.base_y = tmp;
|
||||
// Y axis:
|
||||
tmp.x = camera.base_y.x * cosy + camera.base_y.z * siny;
|
||||
tmp.z = -camera.base_y.x * siny + camera.base_y.z * cosy;
|
||||
camera.base_y = tmp;
|
||||
// Z axis:
|
||||
tmp.x = camera.base_y.x * cosz - camera.base_y.y * sinz;
|
||||
tmp.y = camera.base_y.x * sinz + camera.base_y.y * cosz;
|
||||
camera.base_y = tmp;
|
||||
|
||||
// Rotations for base_z:
|
||||
tmp = camera.base_z;
|
||||
// X axis:
|
||||
tmp.y = camera.base_z.y * cosx - camera.base_z.z * sinx;
|
||||
tmp.z = camera.base_z.y * sinx + camera.base_z.z * cosx;
|
||||
camera.base_z = tmp;
|
||||
// Y axis:
|
||||
tmp.x = camera.base_z.x * cosy + camera.base_z.z * siny;
|
||||
tmp.z = -camera.base_z.x * siny + camera.base_z.z * cosy;
|
||||
camera.base_z = tmp;
|
||||
// Z axis:
|
||||
tmp.x = camera.base_z.x * cosz - camera.base_z.y * sinz;
|
||||
tmp.y = camera.base_z.x * sinz + camera.base_z.y * cosz;
|
||||
camera.base_z = tmp;
|
||||
|
||||
// Now that we have our transformed 3d orthonormal base
|
||||
// we can calculate our focal point
|
||||
camera.focal_point = camera.center_point + camera.base_z * camera.focal_offset;
|
||||
|
||||
// Return our set up camera
|
||||
return camera;
|
||||
}
|
||||
|
||||
// Gets a pixel from the end of a ray projected to an axis
|
||||
vec4 get_pixel_from_projection(float t, pinhole_camera camera, vec3 focal_vector)
|
||||
{
|
||||
// If the point we end up in is behind our camera, don't "render" it
|
||||
if (t < 1)
|
||||
{
|
||||
return vec4(0);
|
||||
}
|
||||
|
||||
// Then we multiply our focal vector by t and add our focal point to it
|
||||
// to end up in a point inside the window plane
|
||||
vec3 intersection = focal_vector * t + camera.focal_point;
|
||||
|
||||
|
||||
// Save necessary coordinates
|
||||
vec2 cam_coords = intersection.xy;
|
||||
|
||||
// Square window trickery
|
||||
if (window_size.x > window_size.y)
|
||||
{
|
||||
cam_coords.x /= window_size.y/float(window_size.x);
|
||||
cam_coords.xy += window_center.xy;
|
||||
}
|
||||
else if (window_size.x < window_size.y)
|
||||
{
|
||||
cam_coords.y /= window_size.x/float(window_size.y);
|
||||
cam_coords.xy += window_center.xy;
|
||||
}
|
||||
|
||||
// If pixel is outside of our window region
|
||||
// return a dimmed pixel with the window's border color
|
||||
if (cam_coords.x >=window_size.x-1 ||
|
||||
cam_coords.y >=window_size.y-1 ||
|
||||
cam_coords.x <=0 || cam_coords.y <=0)
|
||||
{
|
||||
cam_coords.x = 0;
|
||||
cam_coords.y = window_center.y;
|
||||
vec4 pixel = texelFetch(tex, ivec2(cam_coords), 0);
|
||||
pixel *= 0.5;
|
||||
return pixel;
|
||||
}
|
||||
|
||||
// Fetch the pixel
|
||||
vec4 pixel = texelFetch(tex, ivec2(cam_coords), 0);
|
||||
|
||||
return pixel;
|
||||
}
|
||||
|
||||
// Combines colors using alpha
|
||||
// Got this from https://stackoverflow.com/questions/64701745/how-to-blend-colours-with-transparency
|
||||
// Not sure how it works honestly lol
|
||||
vec4 alpha_composite(vec4 color1, vec4 color2)
|
||||
{
|
||||
float ar = color1.w + color2.w - (color1.w * color2.w);
|
||||
float asr = color2.w / ar;
|
||||
float a1 = 1 - asr;
|
||||
float a2 = asr * (1 - color1.w);
|
||||
float ab = asr * color1.w;
|
||||
vec4 outcolor;
|
||||
outcolor.xyz = color1.xyz * a1 + color2.xyz * a2 + color2.xyz * ab;
|
||||
outcolor.w = ar;
|
||||
return outcolor;
|
||||
}
|
||||
|
||||
// Gets a pixel through the camera using coords as coordinates in
|
||||
// the camera plane
|
||||
vec4 get_pixel_through_camera(vec2 coords, pinhole_camera camera)
|
||||
{
|
||||
// Offset coords
|
||||
coords -= window_center;
|
||||
|
||||
// Find the pixel 3d position using the camera vector basis
|
||||
vec3 pixel_3dposition = camera.center_point
|
||||
+ coords.x * camera.base_x
|
||||
+ coords.y * camera.base_y;
|
||||
|
||||
// Get the vector going from the focal point to the pixel in 3d sapace
|
||||
vec3 focal_vector = pixel_3dposition - camera.focal_point;
|
||||
|
||||
// Following the sphere EQ (with Y axis as center)
|
||||
// x^2 + y^2 + z^2 = r^2
|
||||
float r = min(window_size.x, window_size.y)/(PI/2);
|
||||
|
||||
// Then there's a line going from our focal point to the cylinder
|
||||
// which we can describe as:
|
||||
// x(t) = focal_point.x + focal_vector.x * t
|
||||
// y(t) = focal_point.y + focal_vector.y * t
|
||||
// z(t) = focal_point.z + focal_vector.z * t
|
||||
// We substitute x, y and z with x(t) and z(t) in the cylinder EQ
|
||||
// Solving for t we get a cuadratic EQ which we solve with the
|
||||
// cuadratic formula:
|
||||
|
||||
// We calculate focal vector and focal point values squared
|
||||
// to avoid redundancy
|
||||
vec3 fvsqr;
|
||||
vec3 fpsqr;
|
||||
|
||||
fvsqr.x = pow(focal_vector.x,2);
|
||||
fvsqr.y = pow(focal_vector.y,2);
|
||||
fvsqr.z = pow(focal_vector.z,2);
|
||||
|
||||
fpsqr.x = pow(camera.focal_point.x,2);
|
||||
fpsqr.y = pow(camera.focal_point.y,2);
|
||||
fpsqr.z = pow(camera.focal_point.z,2);
|
||||
|
||||
// Coeficients of our EQ
|
||||
float a = fvsqr.x + fvsqr.y + fvsqr.z;
|
||||
float b = 2*(camera.focal_point.x*focal_vector.x
|
||||
+camera.focal_point.y*focal_vector.y
|
||||
+camera.focal_point.z*focal_vector.z);
|
||||
float c = fpsqr.x + fpsqr.y + fpsqr.z - pow(r,2);
|
||||
|
||||
// If there are no real roots, then there's no intersection and we
|
||||
// return an empty pixel
|
||||
float formulasqrt = pow(b,2)-4*a*c;
|
||||
if (formulasqrt < 0)
|
||||
{
|
||||
return vec4(0);
|
||||
}
|
||||
|
||||
vec2 t[2]; // A float should be used for this instead, but the shader
|
||||
// isn't rendered correctly when I use a float
|
||||
// Cursed, but it works
|
||||
|
||||
// Solve with general formula
|
||||
t[0].x = (-b + sqrt(formulasqrt))/(2*a);
|
||||
t[1].x = (-b - sqrt(formulasqrt))/(2*a);
|
||||
t[0].y = 0;
|
||||
t[1].y = 0;
|
||||
|
||||
|
||||
// Bubble sort to know which intersections happen first
|
||||
for (int i = 0; i < t.length(); i++)
|
||||
{
|
||||
for (int j = 0; j < t.length(); j++)
|
||||
{
|
||||
if (t [j].x > t[j+1].x)
|
||||
{
|
||||
vec2 tmp = t[j];
|
||||
t[j] = t[j+1];
|
||||
t[j+1] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Then we go through each one of the intersections in order
|
||||
// and mix pixels together using alpha
|
||||
vec4 blended_pixels = vec4(0);
|
||||
for (int i = 0; i < t.length(); i++)
|
||||
{
|
||||
// We get the pixel through projection
|
||||
vec4 projection_pixel = get_pixel_from_projection(t[i].x,
|
||||
camera,
|
||||
focal_vector);
|
||||
if (projection_pixel.w > 0.0)
|
||||
{
|
||||
// Blend the pixel using alpha
|
||||
blended_pixels = alpha_composite(projection_pixel, blended_pixels);
|
||||
}
|
||||
}
|
||||
return blended_pixels;
|
||||
}
|
||||
|
||||
// Main function
|
||||
vec4 window_shader() {
|
||||
pinhole_camera transformed_cam = setup_camera(window_cam);
|
||||
return(get_pixel_through_camera(texcoord, transformed_cam));
|
||||
}
|
||||
Reference in New Issue
Block a user