vault backup: 2022-12-09 12:58:54

This commit is contained in:
2022-12-09 12:58:54 +01:00
parent 39b13d18a2
commit 1a95efa6ea
3 changed files with 15 additions and 13 deletions

View File

@@ -13,7 +13,7 @@
"state": {
"type": "markdown",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/ciagi_gr/Zadanie 1.md",
"file": "Myśli nieuczesane.md",
"mode": "source",
"source": false
}
@@ -85,7 +85,7 @@
"state": {
"type": "backlink",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/ciagi_gr/Zadanie 1.md",
"file": "Myśli nieuczesane.md",
"collapseAll": false,
"extraContext": false,
"sortOrder": "alphabetical",
@@ -102,7 +102,7 @@
"state": {
"type": "outgoing-link",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/ciagi_gr/Zadanie 1.md",
"file": "Myśli nieuczesane.md",
"linksCollapsed": false,
"unlinkedCollapsed": true
}
@@ -125,7 +125,7 @@
"state": {
"type": "outline",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/ciagi_gr/Zadanie 1.md"
"file": "Myśli nieuczesane.md"
}
}
},
@@ -171,6 +171,7 @@
},
"active": "c8e570f8081d25d8",
"lastOpenFiles": [
"AMiAL/Ćwiczenia/Zadania/ciagi_gr/Zadanie 1.md",
"AMiAL/!Materiały/ciagi_gr.pdf",
"AMiAL/AMiAL.md",
"AMiAL/!Materiały/funkcje.pdf",
@@ -179,7 +180,6 @@
"AMiAL/Ćwiczenia/1 SEM/20221209121051.md",
"AMiAL/Wykłady/Wykłady.md",
"AMiAL/Ćwiczenia/1 SEM/20221202121227.md",
"AMiAL/Ćwiczenia/1 SEM/20221123123903.md",
"AMiAL/Ćwiczenia/1 SEM/20221118121118.md"
"AMiAL/Ćwiczenia/1 SEM/20221123123903.md"
]
}

9
Myśli nieuczesane.md Normal file
View File

@@ -0,0 +1,9 @@
Co openAI ćpie:
To determine whether a sequence is monotonic, we must first determine whether the sequence is increasing or decreasing. To do this, we take the first derivative of the sequence and determine whether it is always positive, always negative, or has both positive and negative values.
For the given sequence $a_n=n^{2}-8n+15$, the first derivative is $a'_n=2n-8$. This expression is always negative for values of $n$ greater than 4, and always positive for values of $n$ less than 4. This means that the sequence is decreasing for values of $n$ greater than 4 and increasing for values of $n$ less than 4.
Therefore, the sequence is not monotonic because it is both increasing and decreasing. We can express this in LaTeX as follows:
$a_n=n^{2}-8n+15$ is not monotonic because its first derivative, $a'_n=2n-8$, has both positive and negative values.

View File

@@ -1,7 +0,0 @@
$1 + 2 = x$
$\frac{3x^2}{12x}$
$$\begin{gathered}
\sum\limits_{x\rightarrow10}^{x}x+2x \\
\frac{1}{2} = 1/2 = 1\div2 \\
x \in
\end{gathered} $$