vault backup: 2023-03-06 11:56:25

This commit is contained in:
2023-03-06 11:56:25 +01:00
parent c5379be9e8
commit 770d0c91fb
16 changed files with 24126 additions and 48 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,756 @@
---
excalidraw-plugin: parsed
tags: [excalidraw]
---
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠==
# Text Elements
%%
# Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATL
ZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHAL
RY8RMpWdx8Q1TdIEfARcZgRmBShcZQUARm0ADm1YgHYaOiCEfQQOKGZuAG1wMFAw
MogSbgh9ADkagGkAVQBFABVnIUkAMwBmAA1mDkaAK2YAa2GAIXSyyFhEKq7AhE8q
fnLMbmcAFm2U9cgYblienu1tgAYANh4AVgOIChJ1Y4BObYfJBEJlaWOEh7WZTBbg
XB7MKCkNhjBAAYTY+DYpCqAGILuiMTNyppcNgxsooUIOMR4YjkRJIdZmHBcIFclj
IF1CPh8ABlWAgiSSXEaQIMiAQqEwgDqz0kx3BkOhCHZME56EEHn5hN+HHC+TQsQe
bBp2DUR016IeBOEcAAksQNagCgBdB6E4lq5hWjhCFnghArY6xW4JHo8V63VIPRgs
dhcNB7ENMVicGqcMTcW4pHq3HqXAMPQjMAAimSgXrQXQIYQemmExIAosFsrkXW78
A8hHBiLgC8RjlcUik/cmErEEjweg8iBwxtxXe7ipBEXjC6hi/hS9OIHA2IQ64Vp2
AirMymDt2ALtu7dvd3vnFrDzwTwcd4eD3uwD1b2fD8PD9tX3vz7MrnewFub9Zl/M
pYg+Q8rmAspQLAWJXgAqC91PH9rz4SDoPvJ9Mww5C71g1NEMw2Dtn/XDZhQkDD1u
R89yQij8Oo/Zr2IyCPyfS9WKfK4EMPHYuL3FIyI4oC8LfJ8Elo2ZnFEhjxL3BJhI
vWSykomDD1edCOPo1TGKfV4AT4nSwDUrC91ia4AOcBIBNmCzDI4myxNQp9YgHKyL
NssCeCU6S3K8uCeivDj/OcqjXJ6XyykvG8wvU1ztmCi9YliuSXPM0iPNS3T5Ls24
tOS2IAp9CCQqKuKzLsq4pOizyKtg2IrnuPjXmKnirNa+rD1SGqwGcTq0vC8yUw64
qhNGrrXJSXiOIGnL0rswcrKcwb4vMhJmsc4rFIm1bKrAhIHOS49JvM15esvE69oa
14kr8q75qGuzNI88rru6152MK4rPtek9pzU1dAmdERwi3PcLmSFILleFI9iC3Y0x
SzbZkhyLtlunp3gubYAyuBIUhR/dtB6Q7IquHjNIHQm70h3HtiDPZoZontkdp85E
queCCZ6HH8Zp7c6a7C4LIxyTSIJomj3OP0TnO0mLg2z6BYh85Xiuf0fKC3tlalyG
gx7Hgjaam49e0fLCYJhJztN9m03TU2eF2cDrjuO3IsOnHPsay5bcF82rlxrGaPgp
G3f931hZxrGGaC8PVduQNXk+nH4KpyX2eqm5SPeQdceps2ueuRK9nedOVdR7Quem
k2DKdngC8zodTi7W7k4bjP/dN3mDb7Nmu587t0VDuPC54FI7j9dFWfjyubnV5Poe
h0fM9ONyhMJmfC9TW5E8VngLhXrvIrTW5A9j/vVY1hJtkOoTAyPq+S4HBnl8vufd
j9QO7i3zPSN5lKPEw6FyDF2IcGseD9lnsTJqNF5b+kPu/GBZ9rj43eMAzOZ9kzR1
fog6B0smobSHLvQMb98GQyaoGYeRsLhkJAcnQ6lxTgH0fnPaqewKY32wawmB7ChL
41wTwghicDI30PggoRFC+GcMEUg4RDCxHMLwSAhuWdEaSKro1EWP9/T507gnJqqj
i4X3IQDcEhB9BujbAgAACsDZgoNuCLmXLMCA+BQhQHhPofQah2w2PXPSNAoF4JfV
qm9EyxQAC+6xSjlEqBIHocAcz4BSMoAAaggWIfRbo5i6BQOAKQAD6FAACa9B+TzH
EOgJYnpVj8k2GgZw9cHgGl4Ilc4rsiaPDFNwQOnxvi/CgNweGgIODAiqVJAUUoYS
kiRKiDEmIyy4nxA6EkCI5kUnIBwaktIchDIeEyFksp5RSB5I4yUQoECimIC8TUFz
pTHKqQKBElR7TCFVOqCUK4dS4n1McI0K4TTNgtFaW0byiTECdPWKcriwjzhftjOG
t1oxhk4NwSSKLYwcHjBwRMaAbZCVJmmLMuZ8zzmcQgMsFZiDViyHs6FjYVzNlbO2
Ts3Zew9iYUdGcG5xxoEnIy1xs4YQdiLCWSlK41wbjyODJ6+4AIPRMnpC8BU/IqSV
blaKqqtXhI1QtLVVleYBR2Iauaeq5V9Sin1PYxruXRTPsaiyVkbiOu1X1CejrSoX
n7I6q1/VFWmVgpeO1fULLZXNWtaSB9XrhsDXxBuWVdVxo4kbDyRrTpRrdZeXGxrU
18R9Em5VmaPIa1zVm1Isai06o8oOXNd1aqfTLVZFhTb40H1bSm9N70U1ZqHGa5NK
rQlaoxrmqWfUta5r9ePdVA6o1TsUrm5iKbYa5pDc4IKAaq3jpmhebWxqgqGtTPuo
dfVUyVs1aek966XUZuigeviPQPW3tPfW090192vvXbdfdWasb9q3euq9iUXzPsA1
ZXG579Wnqzbjf9F710XW2OmXNO7pK7EgxappqHooM03fBnCHEGbGVnVqtdDMVqPU
jVqpdF5X6LvA7vVdDHC3wd5uB0i+6/VIZnQBpD4GTjGqDKavDUGZJ+sfRRiN+0+q
J0NSkFjomNaGqasavpD7S2gbUxxE+qmr2RRSKpi6pMFOYduF6tDItBOfsuHB0TfG
+KweNYlcDpx93mZwyO0D/oGMYao+OrjGnu2DvA9DOtIXfPSaaYhlMjqyMxdAz6cD
PFXVJZM355wXHEr7vA3cR1/GvzPqMwZAKRXJM2jMZK+xoNQX+wPlg6avoDJIYrsT
dM8EMakUgTbchJMuw30iuPTS6t9GV1JgfeCOM8YjeJkwkWQZ9ON39pzaGRtma0Kg
WbXYvsUrTSmy16W5GjbgR3hLfbQtDFHdbvzTbrcCbXAuGZ677MJZ7DTIlGu02Ds8
VIvJjWitE6Ppu9bHsh0Bypl1s9tBIP+w60B5D94XZGq8yVnDpb8nzobR4qcAHZ3z
jdg3u8JD4PUeq1vnA1RyOcebc0pzYzsPccY3xhZTG/2IdLfbvlIKn1ie45DjQuhd
tEEpkHBtwXiUaJY06YL6Gkl1tyP1hZdEsMTY9fm7jbs6YSeV0ZtbH+ouI4+kUrdX
2qvGpcIFwbyOxupcG41smPRvOkf247o7gR3D5fm1SKcLG/XXfm+UXbL3pwmta+Jk
GAmojIEe9Af7jRBtvch8dymYPvuzYG0HMbM+pvk8++a2noPufQ/S3jynvPgec+J/
zwGGOGCDe7Em8Nx3VuXZ+wTmb2RpvZYPdO/n2GhNJet+1wfQmI9o8NydhcIcZeI7
j4zJr3nw+gwPzH7Qpfte2+aQJszovCvDaZ8H2H1IGefJZ/z3vk/B/i9H6Nhf7PCf
U+B7dxbtvzeTdV8+uguPKUP8mPfzXr/6Y48KY0+beWMWiPol+CuYB1UEBpuT+AeB
uEeh0Uequi+o+qBk+GsiOn2dMnM3MKYfMOBJM/oYOfoPY3WestMFWsKFiViBYdi6
ojiYqS4EqQqHiXiPiMgKw/i0qsq8q24X6FG5WZQ0SxQsSkA8S6AxArIQgRgYwaSz
ggwsIAAspWJMGaCkNgNgKQGkn0EIBUvAE8jUisOQGsCuA0qgFFi0lsClObGzq4k8
DcuKGgB7P0j8H8GgEOKMuMqCPcjMusuSOgGiAshcPyDiHiECsSLMoEdAFsjsnSPs
iuIcmyByE8tyNgLyEgH4Vcj0nciuIKA8qkVUIqK8iuCqJIFCl8q4j8nqLAP8pMkC
uaJaIUIDKspUfyg2B6POKTDcA7OPJiuGNwFjAMXGAmFUtOh7F2CSnmMEKyswS4ti
NSrSrWDKh0TCuUMytYqKqgI1OyqmD2L6HDCOLyhOJ0SuMKuSuKg8FKpuEEher1CJ
halamltJiGhFg1G6u8d1CGo8X5v0fGgFJFIagFJcOBgFDRMCc+mfM2gFBPAqgFP2
ABC8bBL9CxM+snABCBkFnZG5JicVNGu+PidhmAAVtiWBAzABDxhej6GOsRluo1LS
WNO5iSdtCel8a5KiU+L8dJsPpCWSWAEbEBgFMQlZFSVBk7GumKRaj5J+gZs+uPGu
nVPyQGGOpeFiZRtJrzMydmoCQmvmnSReqcNqakICVGPqYCVzCWhaTRmqhaYqQaVB
q4eachNQeUHAFVsDHwdLJAlviVAcbAWbAgg/JFNbpASTHcOmNNOiAPj1v6ION2Ic
dbDbqrKcJPrzPJl1smaNumQOMnCXFma1nHLQhMRQezKmfJtbO8C3rGUFEArvBTG/
mWSXFzAOD7AWdLKTFjBPLsY3oGYdBtGLIQbjljI+o+rtr2WWerBTHDOLE9ktofMn
I1O3ItqTtcJ9A2bvHLj1pcHDE7JpF2H3NuXcLDOrOBHrh7khqQQZJpIeZtpGfjF2
Aeb/EtgNtjnVluXed2eiFPB+c9mOScL0UOXeYOCLOdLBnOaTj0edAOLvD3n+UbiL
BtI9kQUhiBRNuBShXsKXBKUBc9mZkFOHrBRBZXAzJeYRchQzvlBtIfO9hOUtqRDR
D5EhXBfRfsQGAZLhS+YrNnIPLeWWXDK3Fghhbjk7PTHDCfFPjvlQatAKLQe4vQR6
VUhSiOOwQYJwX4gEkMncXuE6clDpMIWAKIWUOIRUNsRALgAABIJDCgJA2IADiRgF
lAASl0M0LgAAGIUDYAwD6CVisjKEGELASDGF1IPAWFNKyYritI7YdIH7dJOHDJTE
rhfDuFaWoC+jcrmVjLyiTIFH+FkjzIhFhHLKRFrIFWbJUg0gJH8jJGPJVDpGZH8h
5U5EJV5GwrTIyhFESAlEdjgofLOhVHlA1F/KGgNGEhNGgqtHUrtGoACpdHbEHwEy
z6cnlChhYrcAT4jHYpjHDLojJhdjDErjZgzEIBzELhXErjlgQrLH0qnHrGQCbFnW
7E9j7HnTqzmZuInFrGCrlAXHbHKWSqaU1ZQYPHCkeSAkwnPrakOkWrGnqlSYkTNr
ckETNpyn8l6akkamwQwZSl+YXS+glbOq42Raykw140dTI0PgeSHzZb5o+i2ppqU0
hSqkFqxYlrw0kbjoXStkdrJTFagZOzNoDijrNqQIi3xqXCTrNpBhS3xpcyy0ppww
obNqHT7oXQqk/qGqhT8lgYPpDjHqHoc0AbphybIkPramA4G0Pqq1ea/qBhq3gY4z
0YOYCYC2qmJRlYAZeEOZOy5qIb+iOo2k4bIYJZAaRSOrWZHqgZB3Wquagbu1dpY3
xo5bE3Y38Zo1J1Pgx07CT4BTElfpG3Ul6ZCRjSGoOrymfr+hk08l6Y03ynanjyY0
I3Xiql3Dsl7j/E9pM0d1roHxN2c1sb6me2Gnlo2rPqET5o+SAmKlO1Q1Zo3wgl+r
l38m3zKYgn51KmZ17gQmHgZ3N1PhCbXj91bpmaUlm0H0x0EzgnEnJwBSWndTgR30
no7Z33MknCp2QRjrgTn10Rf1IZ30hrgTD1QbtTdQ0Swmvo+jt2zBHFgPd0wNv1j3
8mwMJTV2wQjTdS7CwnP2S3PooPmQh3IPPGJ372CQx0pQ/0wPPEPawljorp4PMk+p
4MnrJZ4NurL1b0wOvo5rPqgPYR72c1JWuQf3cS9oiPb3535TgmqmaTgmfonCF1QY
70hQ3or0b2yNQ351Hbgnq0cOkOzCH2K2KMWq7yGq528NGa5a8N6aMa8PiY9h33ia
1p4NFbiMwPu2KywnZ2JTwNlDdiO3AMWo9iO1uN+P50+4IlFbGN+aInW2UNlA3yHo
CNbqJMPpBQIkW0mnPobTNrqwIlTqEwIlaM8P8krVRr03oks3nTFQArM2BN+Zhppr
H3Uk4wxo1PZ3frPpuSfqsP8nrz8b4nlq2YWo7YATJNF2fHRPSYAWYn1PTPObURoO
YPMn4zFSZS72hNwRmlZ3jNQbgRWpK1dO7CITNN7MLNPgcZHO9QlOcNgRAnXjxOBT
yNzMNT3raZLMRRXqSTFQT0hS0I/N+puQfMEMb03P6PknlqHN9PbMqra23NwTKMqr
61dO+jNq3xtS9ry1dNKZy2PM+zNpYt9NCMqpmZtS92eZEtaNR19PQyi14vyZI2nM
jP4N+TvpdP+P5rJjbTGlT1dNlO1SWbykPZWRQvwvj7Oq+MCmNSinQNlANzePDN/H
Bh8RSMV1+rVTCmJZGSbMHwb3/MV3yNi0V1XonBMtKtw27PSnKshRINit6nM06v2v
JR6Oc2CkeQutbpGws0y3yk+QeT/2+uKnUt2sb0BjCneZ01TPY2nCvSPNT7U0vPXj
3N/OWt/HJvHSJvYSPqvTAuzB9qJrCm4xZQ6vrMhRGvKmr2T2Ks8kYxppxuIt+TpP
ymGPJQkOuumOT2ps8nQmT25tyv31ltms8k3BZR9sClabJTltisUyM3Cm0v5oB3yl
wkLtRvXgsu1SENivBMLtdvY2xM2uSuQImu4PKk7T5pZbynWz+uysCnnT+urvYTIr
ntDvY3vD+uZs6W1PJQUvwu8zlrgPj24mcuStBQmsAfo3uScs3skHuvQed3OuPPML
usge/POsoeKnge/v2bM2IeVs4eAkds2vVsET4z+tjtF6hqXPo2pM2u7vvjqzvuAm
wyMdQ2Hwscr0pT+vEefjWtocglOtqqPO4wYcPt7hE7uubPiecszqumQDumMGenaW
VxLlwJ3xAIaIqkPaaSpxzZhlxzgRgX+mn5lkBi7mXmBztloyMWwKT5DbEWtbJiNb
dlXZEHg7d5CV7aBlFy0I8QN72cdlwzwQpQ3ypB0UpkGQ3D3YUWbYLm3SUwu6bYnD
diTy8y/lLaNQNw+43nPmk6pATa7ypB8Xpcbxkypc5ckWtmI5nlFeQVXm641ckWIw
YwoLRfPY5xvXTlheNeUwwydf+e4E9dTkfYM6lwHkBiedtc1yEzjddcza3wMy+gWS
tf0XWz163TDebZUUS60X9fnDJiiU8ycWk7JjJ4lQTdLaJzwTTQcUsWk4wFwwte3c
kUtlBgpRam7f/yiw4VPczY3A7b4xEUoUaxfe3xHfPeXCST9jd4fcWeQ9Lc/dfZEZ
vWhcw9I8wwo9A9o/rezdfbg5t12dA8ymJx9dA94/5QE8M794n4Kwo4M405I4w487
U43lDghJM+C6BgNzzc76e6b7yYww88WwwzqwC+84boPa09p6RRYxHZBeNkRzq4+5
M4WdhlmZnx1nq/y8JykSBwtn9gq+q7k/Kxwz5mq9mbkZcz69a/a4kJT5cyhmG++f
oiiXVlp5nyJSpDmfW9h4ZVIwdau92w3DjzdNW+WcBx7BAF+gsLR4QLzz/4x9V3V6
f4J8j784IEGLYJIYd5p5NTQxZ/u6q6BwTx7HR+F8R8l/p/a6584IF85+Z/pi1+B9
AEMUgVx7JikxTya9h+wUI6Vmm+G+IyKSVfe/F5vYgX1kG9u/jbdly/d/NeWwPYNl
z/q+BgT8j8K5J+/6C6SRd+q98w9EVm86YHMUfeLy+x7WS+C6T7Ozr/mzO83/d+T5
Xe35p5C5jb64JzH+A9H8Nywwv+C4pRh8lfMPNoiAFx4v+y3T/uTAbii9X+/8RSIf
1f5BRhcKBJARTBgH2FtcqcCXKWQjgQCEe+sffggJXJYCmK3/V/r/wngq4KBz/agY
LmgHb4j+gA2hMAOLygCWB4Aygf/zwFkDIBpA2gcZx4ECC9+XAugXgOQHv9o8cscA
oILbxIERcY+S7Btztis9ucVOFQZzGXJEFOcbPdQTPg9htlVedwfZtzzF4HFmYu/V
XIrwi6h9Ve6GHGPJln52ChIxsSSEvzN4PZOcyvW/rvEOh+8qyPgovpHwkQx9OEMM
feKwP1iI4eIuZLfhHEMRaJz46+KvvX2z6B9fst0VbskLDyPl7cS8SIQHDCEY5S+O
fe3j5B8jL5C+GQ2IdkOLzRDMhyfQvkUIiFx5msPsXmO4NVy6IlY9vAPjPkZiBwH8
/QjWBwlkFD4z495MYWHhlJDgwe0wgYaYLTx3ARhQkKYcXkgQ+c8u2gp2IQhKEqDV
86BfPPAS/zn4xBbeO3LuRIGH5jhUgivEMLbx3CQC2uAvJXkDx940wuAhOLPjTJPD
phFaDaAGRUHjwHsaXL4ZoPLhLCFh9wofFzFmEEDzYwI5ONVEwHTDMc6iaPKlxm67
cheSI2ASoNhHvdthEw0Yaryu795Phzw94TGSWEpQ58vw9YbSJ+GC94IkCfniiKvx
d4+Bh+TkfCPDwbouRV+PnowN7ysjhRbwhMtSJUFc5sc7I/WMYNIiLCVBxI1YUYOV
FnDxhKw9UdMIphuQ4yY+AkXMPWEGjeR3wySo7ipEUjuR/I3kdfn3zZ5j8WojkdaO
xG2juBcg50doJZFb48RBuC0d3zJEfD/Rfo0kacLWG74HRYYz3DcNNwYhlckYkODL
leHs5YY5/CXnoNJwGQhIXKVnDz0ZxQ8Wcl/dnEznR6U5ZRasCBFrDBzpiSK6sTWM
D3pzU43sWcNQWWI6wbR2UkPasTNgfikQ1yMo3MT2ObH9i6evoTXDRF9BdiDsg4vs
ez3Zxk4OxOYkcX6G4xpjWxgYZcamFXEDiKx9Y2cRmIniLl3gw41/tf3740C/+jow
gTLmngf9nhXsWcp6M361CFc9eYSvnlvjZdbxh+D8eeVNxphOxZYoMP+MXHvj6u5X
Q/E7Fe6IDnsR4oBNcAbFtddRPobHrtyV4HxqoAoyGBPkHAI58c8+SgoLFk6yVLE8
lWxIpScQXU2CEIDgr4m4KaUvSUnZ1ipAMpGUSgR1MypIFeDuVSAFAZgI0DNCxASk
sQZoMoU0CxBcAFwRoM4GGCFJAqRhZYKFXMJbB0y1hRpGcC7HxVbkOxLpClUGQbU7
oWVHwmgFyodVoihVBZMVQiKrIzJFVbZFVT2Q1VmQKROUGkTOR8hsi1yLSQZOap1V
uqLyXqmUXeQVFPkbVIarqBGo7Ev2kARoiChaLgpHQIU2amcVhS1INqsMYeF2BtIM
AYwgxTUKhmymoptquKKpFWIgL5Qukx1MlP9UomLFrqNYW6t9SbAtgtibKF6smE+i
OdjiY4O6j9RnBsA5w1UlgtcSBpelYIoNQrABG45ckkSkrSBoe0mkgkxmd9IiHgxW
mlM1p8LIDhJHxILSumkDUTnZF6gVN1p3UOjgfQAjtoumF0x5uugumStbp14ANERP
k4gxFO1oWrNNA9qNDAyj2aqDRQx7Dk0w+MSMj2VQlnxaRBMccqhMDiYxsYb4ssgd
V3gOwXOw5fGGhTArncUywMrnOj2UH+xOyt8DvtgQZzI4eKT5L8Qdl9BHZuMmEmWB
7xQRbiGcikeCRPF8GTi6YksbHFjj3EkUewJvGiMDPZm9ZOUA2KGTgWkqUZiJdBMi
QpyUo1SZwqlbxLROIA8FAk703dHeEumqQokMSdiVUCEAAAtA2cMDYDJg0kdlLoNs
HqCwhXg9AWEMKE0Bmgz4ckxYApNML1JlJkHVxK0msh2FQ8mk5wrwEmS6SPCOxbwj
lWyI2SgiIRUIksisnUoo5sRSqrsnpAHInJvk9AA1XOT5EOqnkwOd5I6oZznkSoPq
sFIGqhTIAw1OoqNWNDjVYpQSKahChmpzV8iqUzUC7BODxkuka1XKagCyk9zRixU4
ZIpFOCY5QkFQUlLMUuJDTLqSxeqbcSSn3UIAj1eFJlI5TKwMU5xL6ovN6luJ+pIq
CiTPNcQ3FVi6si1ONOQbg09pV8mljfLFYXz758JF0jJRekOI3poELCb0QDAWRARS
2F7m5DhEw8ieQ3HHmjGLLoDUwqYX+RDAlkRopZpEhgq9LllHzfqis9SnRN4JKc5W
NUB6CxN1muJJCEAAAFJwAAAghQAqKwgbErQBIF0GdCaAAAjtISIXDAcwRCl2cFTd
mUAPZjSVkapJ2K3xYq0CAOd6DcJ6TNQ48oEBHJzmXJE5wRCyXHJWQJyAiVQSkHZJ
TmJFXEtVLqpnLclZEZF0oPOYNQECFydFxc0oq4nKIzUDJVc6KlFIgAxTmiDc+KZC
kSktyUp8Kc6CHBFzdycpaKPKVtRxR4odi6MUXjDGmJVTD5CxSAFdSrDzzT57ijYs
1KeprzXq/8ceaOD5Q7yRw+86edEtXAjSsF0mB+eC3HR4kEslJYqBtNKUnozpdEap
ZzRjqbM3isJO+aUtVIHSygV6TZj0zywqtc0fJeFk0kho60TWhNB8P9BfmKVgalcH
+J9DSH4zOemBBbChT2opgCC8Iy4DSVs6YzRsi5RWIdGJmBkIu6E6Hq5wMgnAhw9c
K4QdhxilwbuH3TMinEK7gTKZGeY7OQOeyDgmoq+QWWuKdgM8qxa447BcpbG5ivY+
MGUtBP9jIwzM3sSfrTFgWAxWAJE6xIgrfnIL8l7iaiWpWVmqy0qoEB6clABg6yxC
es7qpWAoCkAoAQgAADKxBWQzAK4PQEmBdAbEmACgJWC0CaLyglSV2bUndlhVEq/C
y8NND9ktYRFkYYOQMlDkfUpFEySOSookDyLFkl1EqtZKVXoA1F8RByWnKORmKs57
kgxSKFyJhzjVnVFycUX8nKggp1i7UOFOrmRSxqpoeudaEbkJTy52S1ufOCHBQIkc
W1Y4L4sKlBKSprsGUjSQiVTzBp+S2JTSniUMompLKVeXsXan8J8pmSnqTkoGlRLW
CbpQpWfPJoTKrpRa5Uk/JXplr4WVqWac/W2hIlhSY6aDr1E6XPg3Uza9NrMBfb0d
ylK9JtSCV7XPzJZr86rF6U/kz8Hexy8eMaI+4QrvlWwhnE8oASbwKZdMLbv9Lxmk
5vlLMM+AhPZwArr4QK7cfmJOAgSYJB4tuETiFlixp0hMP5QOPnEg4T16XQ+I9mq6
vKcFRElFdLPRVMFzqKChWTiqVlcEVZ9EopaCW3Dqk8FZKghWZVICkKLIrINQPoCM
AlIAA8gkD6A8BmAmAK4O5VwB2UbEHC6pFwrMKuILCfoEVeNnFVdJHCWk3yFIBlVp
U8O5QeVb4XNVyKY5lkpRRCkTnar7JqcpIunINV6Kmquc01QXMuRFyeqNqvwGXKtA
2KHVdi51cCicVuqXFzc5KeUDhTbEqyBnaGPlIHkRgQlgSnapGGvJ7VI1p1PJbmpi
Vzy6UC8xJQ9WSXJq2p00NwRku3kOa952a+YtZoKXSoZlharkuMpCjBaIYVS6iGDW
6htqLpza5kpu3aUAQsGvDRLXUr/CJax2VqBmMtM/AycplssgLd6U2H2RC8gMj2CD
JRk3ZcJSOR9VAK9wKC/xRuPoV8OWVHKVB/woCXvxvU7qUy8mJFJDIp5mwD448SBM
H0VGCwkV5iVFQpVlk5qVKAG9BcBswUFqwAUULLRRFJXGVyV6ABhUJP0CkL3KaYBu
JMFiCEBGgPQKAEQsKTNA0kRgQjRABCqCqlJhoLKT7KG1UaHgNGwOaqno2pVhkWUl
jcZMVXlVo5RVRRaVR41xE+NPKxkIJstVchhNHksTdkUk3WrS5dq75ApvqK1yXVKm
sFIFKbluKNNAgNuagA6G4zpoAazUN9oM0hr/k1M/cgZMqlRrZts8uqXZoSVE7l5T
m7Ys9XXk3wXoW87qY1POK5Lo1vmk+QVrGkVrSlvUG9tc1C0wMFd5JcLdhB6WYlO1
2ERLXG3S2RaLmqWuVilsmWDrplI6qGMDJ8ZJCNEHsdGX51WV5ioVNyldeAlOW0yM
Y+/ZYd1qwG0JdECXAAYmOhEzYQuEBC/kLNODQwKYPyyUTCsRiaRIEHW0xDJU/UIL
yJPmubZ4lxVAb8VXpbVLa0g2bboNVQDlWMEmBjAGFygKSdYBsTbAoA+AEYBQCuBG
Aagd2h7dwqFXtyDJPs1ICkHe0rhPtaUsRaHMkXZUFVbGzVRABVXohON4Osfbxo0W
OT9VcO3RRkWzntVLkRiiuVMgk1mKpNaOxKfJt+SOrFc2O5TZNTU2E6l5Wm44AQR9
jexKdvAINVilp1oBTYbkLuRZrOoA1XEsam6vZs50ryedqS9qe9W+0ZrhdQqUXSzu
Pn5rQIUuktfCyOkq6O6uupA+PQungk0DyWtEvyRaVdNZdPzDA9CwIObSY6za+CN2
rtbkHSl3tJ8M2vwQClhSVqG9vB1mC0GQ0rBog1QeJJMHiScbQBsKT4MDq4FQ69+T
CsgUGczx7MAMDfG7DtboFo2ASg1iajwzFl8mXeEJDnWJd9ejg3GA1xmze5D4foMr
suo5g/LeBmy/8RUNt2UV3lNM8w8NhuBiyGcWcG4CF3XXPdx8QkE/oT3+5eGnDHhg
Hq7r+6TrfDN2DdPTAfFOGIeiseHqj0VjRGzlThsnliO8PBHPlS2CoeDI3i6Hblf6
JchCMRWETE9clNFSnt/VYq0FeKkDctsgR3hwkeetiQXokCEAGFjQLoK8HwAsrnAK
QHMLcHNAMLtgzAGADwCMCshm9xGnhQIq6Sd6hIPehwmJuFbJUGNbwcOSPtX3Sh2N
oOtVfHO40z7Idc+vVc5JOSGr9Faxk1a1TNWnGLVJyHffjv6pyb7VB+xTcfompxT8
dHqhNd6u2LTQC0uwDlq4gM3cA32K4GnSZp2LriYYuwDEkdUnmWaxdVKNnSsQ+OuJ
/9rU3sJJFmF0bQDXq8A95rKPi7oD9xaXZzUvB1qKlcB0pcMvzR9LtM1J5SIgekj6
7nw1NbLWW1aWT086WUYqPI1mlZpGTnHfpV0yvQ3t+TIWwUyMs2lCkjmzqYqDI1Lr
smumQbYUtzQ10d15GKpvNia1oPGl62y0Bg2CXlLiZ614pqg1Oj1MOY520py9rtF/
bc1EOhrQEpqYI5poLSzJ8etnUZPZsBT6NbOtBxjogdyGgJbOoh17rT19TPa3U1DW
5MglHTUNQFpJww7r1nTUJC6FNO3r40dGxpzmg21qgZmH0uZwjHIxFbgkTWjzU+nT
XBJBn1TZQVFpyzvrKm76app+kmf5ITs/IjzJqBGZbOqlGTHZvM7wxZp30x0krGdt
1DvoBneGPxO+sSUlbztXIsJN1I832xwRYSAh7AzWuybTm86bqSVoGCJNbpmO5Jzm
kftHO4HIGNTBczU3XN9M2OWBzaTeYuaXnEtRuoQybqKWQwAFfoAmAzHXiO7tA9cA
MJeSgb4SyytCQmN+Ypi6dYyXPTmDgLD7MIwEbkcdU2WTyLczMuyhzu9kK7JHAZls
P/qDNc4Tj0Brh0BSTD3hq8lD6FjslzGa6wx8LqMh8uHrQskXH0gpfsJdzcOtZAut
0SBDt1c43r5MB/X8wrFgppxfd+Mv0HhYq2Tlv818VrSoZpLqHoV4XJOL9g4sdlk4
icVSyRcuDflze+R+ctsuwuJdn1pEV9cYaQyHxAuC3UEY1zYoMJDRK6xWJJbUtCw3
Ir3QBYTy5jE8pLf88cessJFOGkccMyi0LDCPfcYeYV0Hpsrtws8BtkOSKxEdCMg9
Er8VxOPjxCvnAILweE7DDz63dg4rf84HP2QPWU87lLFtma2PRz/ZuZl6ieFjAB6M
zNs8mXGJPk9iFi7ueVxwzdlc3h6Ej3VzMVF2iudWCrHVsWPlYys/YBrGEoa1Nb6v
w5V+W2Y8c9iquY4wVlPMPW1lLG5iZyY2bdTzJmyWwgGugyq39nF4TjKrPRJcheou
tD9vsS1tHJdbuv7WDswuLmE9dquPWjxz1umMnmALHr2rvMja8Bhq2A3brX12q1n0
XgVXtrhMwcHtdquLdb4x17a8XynJbXKecNoPtDYxv8z4J31vHHhZnGXq3ByubWPj
dB48RCUJVzbF/HHjSj8bNEb3dcu0HhClEABOLpBaOGx4x8BghFcMMmFGC9NIvQCX
Hst0Yi+i+UB/qrwkzYI1+3fH3D/LcF83tetnG+L0J8GJRp0p4prdrnewawe4nQtP
JrcJja3b+zsE4MhIBkESwtRRqbTLKQWQHUF82yo0tuCT3mO1JKkQvgriRmUjARCy
QPQB6A1BWgbAZgJMAso9BCkcAWlZoBxgJADZrwMYwKtb1PaBF326Y9sFmPlA+9aA
HSUscNArHWNlxjYwoq2Ncaoiux5OdVQONFzjjImtfUjvNUo6S5tx2TcYogC2Ksdg
KOubjvdWuLPVnmy/XlP7DqGd+d+8CMZqHntywCPUSKgQphMf75ZEAb/fGszVMpud
qJ1MJJH9BlNPqQu7E79QgOp7Aa/m0aVTUPMAZ5GtJqNNfbvS33rUSumTI/YyzP2+
TnZsVtaZqWuny1+aSVsaSel5akFBW986TBTDfzObkhgWRZCgWRjB40MUCs+L/PQx
v6MBWB44OH5h8NhwcFmMYe/mBw3up8OQ8TFM7aId7P82B9eSUNmZyHYZUzqImtgy
CwyACzcfALkswLCjkspPSUZm3H2qJ6ewDRpVdvbh3Ml0T24ZW9sSEzKuAYYMKB1B
2I+gzgOUFAANmSADZRCysGaFICxB8ASdkwindI1bBdgdG1pDvCEXUbTV1B8oCHMY
1yrh9RdzTaZLH0T7Y5Zd6fcDqTnqLq7AmhfUcYR3mr19qAfWMju32o7W76O6opjp
rnd2cdp+t4/3aROaaSdcMT6fpr8WGaI2/xtJ0/p2LUwR86ud/VZvhNxL2dCTxzUm
oAMpr+wFurqVks81/VHbcnAkyDT3OEmqTZJ0U/yX7V9MZp9Jg6L04FIfs7ImJOXc
M4GVrtaa2EKs5aiRKMnrISJG6cSU2b9QWnomSUoJk/vEmSz/TmKDUz+hdNy0s07U
nyeNI7TPwCJJaRNMPCDODUu9JzA0t4yVLLnQWwQ4DGENgw3zyQXzkYjFvbkgLu5c
mReQ5yqD7rXwtEXEJVtSHTLSFhXjtkYpS2rBdNmwYYIRfGDX8YfN3f/A93k2vWb1
6y2+vOA7YRe75fFx7zXipAAXvzuMhZZeXmWfIP2a2JuRJftdeuPlu7lVr+wA3A9e
fKigBLvUhkBZnu7seymSfY2ubCysEXkbEva8c47FWsj4Pyu6j74iDveK/oh57CI4
HU6Xkq7jxBCK+GiDGCmPuyNXJDTWGQxPABFhiJt+RYo9Nodu8Onb/DhbVnqKUmpt
wzEjbQ0Z9tVAeAygbADhtIWtBhQNQahfoEaBsArgpC5QmMA4BwB9CDwPlZwuTska
NghjmNlFSGJirvekq9Knnd+2eF8pAOwJ0Do2Qg7S7X+9Vcovcez6vHWi2Hb4+X1G
rLjAToJ03ZCct3LFtqvfQ8dqJPHonJ+14x24J0D3OdQ91ABZZ4ghdx5AJ5/ZMhBN
T30qBkCXBZCylM7YTDT5e7ZsRNr3kTG9zUIAbYtSGan27w+7ic/15rT7RS2A8886
ekmdaZ59pzbbvdtLOaRmZ+1M96Xyl37pSuGugdrOYGQo1zsAL3Txbq08WQzfA86U
IPymoPc5/Z0+evm3nSlTqE89eczP0lP0PSr5ms2/vEHmzj8v9xWxrRmmU0h7H07w
dFoWn40h7QFoycseNtNWX7o85I1rV9m+m4TBj6x7FbakpnzB+1LqUtPemiz49fOq
mY7X2nIzHkRk2Bp7RMdpaoZiWi6ao+ml/WDpvZ+jVVJjtzmxKqGsyT/ubmoS2pTZ
mWY4iMnjPF4ARs9NfPLb3z83RdzA6YeeG2sxiRBzBVNZqdKhg27mN7jhhMiRKqZJ
cplOAI88fIYCaXqgJNe4JY9FrvThjB9LBXmLE8X1ZbZcsEvaxocWXCS6T6WwjDF5
Cy9IboubdqYY5Ea7zMhuwxRXXy/vKmBqutjDoDCYG5y6nHu74ba44PABeuuC97+E
hvAT1GtgB62BvXpMZ/zMPYi3+9WuAT6AXKP9WHSlrATN9/PjjAEHnwXEXHs+q5fl
grtgV1oZv/ZITUr3W15ZeoxCNb/YZnOre77lTu88KwIXEYcPwu08/PMC/H1VysyM
wUfAoWfG4us90RhfL7wjHBdV9TyWnRvvEKB+JwQfCceB6Im1fR4of7n5VzxCLjg/
n82uCeA9gPgIO48BBUWz94e86WgwGRuPNjFyPxdfzMBdGO/UuFEFYRicXsXt7J/l
CR7kgnrCMKplr4NEWBU+D8+3ip8wBHuTn9V9x+rxrgLg9Th7mjgi9kwwXS0UeCtc
0E7b36vkPa//WOuXbas0CGZ+igZ16jJlQhcwAoA9AhAwoSQIQEmC4AUgWgA2fQE0
d9BMAYwLoPUF0eKSDHak5dt7KGKpgzHH2sTR9WsfDIh9Rkot6PvcfOOp9Gqqt3sZ
rflBtFi+05A25OMOOG75xlt5cebsWLygVirtxjseNd3XEji2J4O/ePHvidPqhmKe
Vjh36BOBUx/aCblhjccYFUhe4U9Z3FOt3YBpJeU83uoXc4R79v31NPdL2JdZ96aR
fdYwXOdazJUTzhnmeqYYts/68IB5kiYlZnbqMFkecS3RbPwzakg4B7YPNq3iPZi6
VM7ZJLPX0U7Ck62qWer/Hm1zEZ5+FjSWf8tpu7WGmW8Hou6vTWf60LJLwlalhkkR
Swt73w6YFU4A+YeDbCoIWQhz6IUktpK5k+35JbB6W+3mAE6aIsLQgO4aeAwjtwbc
PpYJweZG5CoBVPrzgh4W2HnBIBxeJgFDYolnAHCW1DloK44fCIOCiwsXtQHICPkG
gFkB+sInA4SjgtC6qwAFvvD4OqDpARy+mmja722GKuu7YqqvpnpVGH8neA3MOvlt
oQA9QCkDF6KQM0DuUdlJgCFIsILECtAKGpWBEKrwMKCTAaSDwBO+j2i76WEZ6Pwr
kwXvr3qmq48n74SKhdoDrB+JbuPocaYOuH4eB1brqreOhxq5Lx+9doYqmqKfon6F
EsfjcaDudxu3ad2UTnn492Bfhn7TU5+rvKjuR2DA4Ewd+plRzuwSoAIWcrmozpN+
cJi35xqJTsX5c6nfnu6VOjUN/i9+B9v34Hyyvn5oLyMBufbXuQyiwwTOgkD0GzAi
/s/Q3Sz9M2pEqBDM+avOVnh/Ikw63GrasuQ+C3zquXwmqLxiywgLbbkH/pO4g2xD
sHyOcmkBrj0iuCpNpfqpRme4q+NEjIFCOGstuCu02sl7ZQaXrhIC0qDiMoA5gRgA
woMKdlKQD2UlYAgCFIRCkjgIAcABYH6OKbmpI1m7vi4SJw9gXMbnG32s4FjurgUH
7F2Tjl4GuOPgTER+B/GrW4+OQQY1SI6yfubDBOUQaE4xBbdhvrxBTqs8auqeOoX7
xOlQRkHtSdLqhyQA07qgB0aeQeMQICzXLxwSEJQeu4r2FQX35VBLUjUFtS+vBsIN
BdTkfZ4mw0he7LaV7o+5DKMGPfZNIj9gA7G6T/h87AYyXKOI3igLs163qZ2CIECA
YgYr6YqvmlIHnBgjur4CE9aKqHradwfnoPBmctJJCARCo0C4wHAChpFIfQO5SkKp
CqyBsAbAAgCkKwIcm6QA4VOmD5SJjimDQh2dqaq1sixnm5shAftIrIhIfqiHlu2x
hXYR+Vdv4HYhgQfVR+OTbmEGEhrbsSHtuKQTJrhOYUjn4JB5QPn4DuVYUX5Cho7m
5ZjYj6DCwshaTsPKT2+QWQQA8ZBAU6lBX+pu4NSjQcKEpKtQY4Lua+9lKED+f6q0
Gny7QSP6dBVBis4WoJ6H/bPuW6NnSkGn6FP6BQnJmKYLsuzuexsmIULFobOnrKKQ
Q0hJFCT3OF6MSSAeJwABAvhIaGOwCcXSsKS9oHHiJAseJnnKYFm2LGh7UkxJDx6v
on4U0qAkZ/qp4Ak49FejkcUZvKShsxHq2x/h3qD9A7hF6ASTbS9dEiS0GPBh6YNq
f9syRGwIJG8SScxJE2wr01/n2ob+cERcyAedBj+xIeIaElp9M7Ef3SP+QDs/5oy4
2BjIkWLMHEY2W2om9wOWAcLd6N03XgnCDgPcMUIfeCAuiBIY30nbAMOHtOK7a4VC
D7ApOHAXYSI+IvPT7aCJ5KZYUwdARgEPcIOM7gLeKYn2Dti6AXbDvU/YP6A+6NkS
IhakVAcZFakkkKQgfet0KOLGCy3hq6G4/oOz7R4t0BCbpSKPmAGQKGsDD6q42kUX
xlwekcTxI2LkczZEBm5BwjsBbkTRDZRhARgHD4PoGzbhRIsC/AtC0eNbB/YS3sq7
QU5Ua3ylRzhpAHhRn0m9ak+1PsWTEIy7g5Fdw4EGZjJcyUQz5UwZlvz4xwTUCVEs
+TMDqKXKxhj8pAIGXrNGMUBwkFFPwtFppDM+hcBjDo4vquF5dwS0SPgrRc8PlCJC
QvntEDYZmMgSLRTUapF7R10aAHCIvYsS7GGXAbHoHizAeLIcOcClw62uEgS0GWhG
etaEEq1wXagcRESI6GeukjlUDEAcAHABXAdQAwooahSAkCwgdlPQCtAfrhwCxAhS
O5RpIYYRMYRU0YUMRcwcYZAA52Y7tKrJhBGMxp2ObgemEeBoft4GVuvgZH75h0fn
W64hK+hEFnGWkuEEmKW+hWHp+kAJn6eq++j265+DYUkFNhQsakHDuF+iTpw215Aw
536abpk7BqtfiCIc2UJvPYnUi9ouEChbfhOEomooWiZVikyFibzhzQTKEn2bQa05
rhL7oMoy6oEc06Ie6/rc6oGYDItIfQnsdhDDmd0heHmQY7M+FcmHBkeZbh2HqP57
MVqKQYhoL4TwZjsZBg8xYRSbD+HXSKcY9JoRh0pR54RypDHSHhNRpgzCkPBoeGD0
kzoxEd05HIwaxaR0lJ5HSmnrXHjB1xJMEwqefIpC4YhwstaY2XrOdbMioYnYKPo7
Qqgg+C7fGTCL8ytlXxVOjnO3ERwcPgTBi+hfBPEHRCPs0INR88X1GLxOriPJMIIQ
lUJLkNQjq5lCNwHPGlC+MOEIrxOfKsLJOHAjHxBw2kYdE5C5fC9SLBKQt86nRCcA
DglwHQmPFh40vLHqIWOtt/GTeH+AEL+ikEj+aPi35hoaB40BBA4z4shvGLW6XsHK
5z8qtlC7/xxeD/Gy8vATWId8gAhV7R6PjDpZR67DoqHIqpoScFL2/0QI4YKNoWJw
1QjUGI6sSuvmZQoaHAKQBjAfQBZSEAXQMoDOA1vrCAXAfgOQqsgBssKB4xbepYRG
wmVCY7JgJMdm4GS8IZMiFuJkrIoohmxlmHl2ZVMzF5hWIWzE4hRYcEH4hPMWWGp+
bboLEQAwsfcbZ+YsfWHRSksc4pxO6mnLHzgX3iPYYMqsetS52fYVUioObWMOH8hY
4b/pLyRsTsT7uCKJlTmxnOvU4tBQ/pe4dBioUh4bhgWvEkGUL5pqHWeJMAOSPoZU
bN78EJCUcHJ6PDlbF8OVodQlAx5kEioeuTCVUApAAwLCBOUKGu5REKDCpeDuUyGv
oAlIMAMoAlIjQLcBiJqdk0hey5QDGG3AsiWTHMGP2uIq8A/2jTFIhXMXCCqJZbti
AVuOxrmGeOrMTDp6J8OgYn+OpYV0g+SpiQFKkhNYZXKROlIX24vG9ibSGOJ6QSTp
EYVyrfrAmPYZqD9yWTqCYsI8sKoaN+Osc36jhCJuOGeawSbzpb2A4ErGC6tTpEnS
hpwUuGS6cSajDBxbTkSyMe9JIqTvuQZoeGvh8aI8y90IHCp6fuv9neHARLZre6bS
bqPHGLOhbIkk8kHTFnEXg/aDxEYqwDtMEqWBXo5H9YJARlGFwuMhTD7EPUVfCTek
UAQG8pc8DST1w2AXpH28mQnJEcpTcOAiT4AFjgFzwLuO1ikBDPjjC0ITAQqkwIzc
PphipQ0Q3AjRLPiQQe8M0aNGIUrmuN52wRvGOT3eBRnknWuCvuQmLhlCU66yB24L
x79QDCRI6mUVQD0C0qtKkFDDAzSSUhwArQKQCwgYwE0BjA8YKQDlI8boYT8qejuG
EQA4VO1i2BcMKMkWOTgfnYhJiIconrGCyaqrqJbjlolrJOiRsmFhWyXiE7JBIXsm
mKAsYclVhsQeSGnJx5okExOUseYkyxpTgKBJOW2CthV+rIYMndhasfO7iw3GGvB+
JLQfrH/Jf+ru4hJtQQjhdIESUvJRJRSee42xzsXbEAYUces5uxpag/Tex5kCB49O
IEeRC4eZziiyUpDUJXQsmdJnimEp8Bk7GYYnxI/ZjsJSikkTBaSVMHHkf6DJHa4O
9mZxIJZvKLDFwwCcBlqpMMn+k+8IGZBloJnAZ4LgItgobzogsPMd4XeUDNbCfxgQ
g/HveWPt8ZJcR8WpFjky0cq5EIO8L5E6u1Qs1Hbku2P6APqjXu+q22xwYUlQpzqW
r5lJqMHeD6UlSUoG0qbRo0AXAUAJChdAbkMKA9AXQEQq3ALAGMCvAAVHGlBURGkm
74xR+Gmk8AGabCH5S8IXmiuISicW4xEDMWiFMxGISzFlp92uzH6JVaSWE1pRIdcY
khjaWSEXGtYdYlnJbaf26XJzYXSGthJOnZ6BgvZu4m9yCcf5mDy+QSuJZJfDHEh8
hU6QEkc6QSXOlApi3O3BZSy6bvKrpUKTEnyhsKfuD9O80ginwse4ac7aQAEeZ4YR
DJuGxhmYrPe59MdDGeERQt6XlDwprkMKZWoecW6i0e0EShGPOypOSkvOjcV+m1YM
ODerQO8ep+QCWgFJsoLcMwgFY3YflqOQSRP2KgGDkQ1mNZdW81rBS7AILrzKnWiu
N3GU8hNjV4Dis8dmIMZCIuCIpR35lAgm8cGebDnZO2DakK8/cYHBYZ6LlDjFWm3p
DAiwLZHqLkIxofArcOdrmulnBAMaUnZ62GO67gxVSRICkKNQEIDMAygAgAXApenZ
R9A/trSr6AVwBwBeUlYMMB9JVgWqTGOQxLvDqZWksShJhkyYLQrgume4H6ZmYUsn
ZhmicZnaJ0OmZmbJS+pZlzJzbsYlzJafg2nSx1YVn4ROdYS5kSx7ae5m85LYROFt
hzsP/6ned+g2zV+4YNk51YB1CClfJkSlFl/JgSbvKAp+7hgLpqHmhCkLh+Sulkrh
xCcknbplBsSZWoSzs1l3Op0n0FysN7JSalxTzh3RMGMzoen9Bv7g+arSKHvCzsRH
JnumbSkDD0qfEYHkf7hxWbDKZ+x7LEiTvuPBoey9QPSsSR8mPBnGz1x8pM/R5x5D
MXELmmzCrHmQ0HM/QgckETSke2vrPB7KkvUHyYho6KYAyHsr6MxHMkPHl/QZxWWf
hG+5VBk3kUpGkKXl3MgJNXGBmSJIB4UkHsVDTkMN7F2HeQDcZVh9ZfATfjJO6JkF
508bXoTgbZ1wtzZWCKCed5m8fggjBgZhfNfhfwWCT7zzKx2IPHd81cCLghkV2Vnj
dgCwR97fwwcJj7XxfaCHB3xdQoDjMC0UcXhZiDFBNEYBZUWIhnxmcNAF7q5kZnDk
OXOCqnU+FkPg6lw70fQGwFJcLpFwBU5BjCwBXkUDKPohGdPH4Z2Be/n6wJvPMoVR
L3ufDjR28Q95Y4SNq/Ha429hbC4ZlUc+oKkFBWpGXK8yhD60FrZKL4EF5sHJFacJ
BWnhR8ecPkJx4ikOPiG4T8WAFMIi5O1FEBlkX4IFRjkQZHsICBYIX68VFCwUz4U6
qsqGWJXq1hawolC4Yy+aMIAm/pV2QRRUyJZOi6wSVCIaFS8FyohTn5qvC9RIiVMn
5Fspn8NKldwPwmuTQFvOLPFDwz+TRlbZIerKI/Z30eIE/qrGRUYXBNCR2pB0KUJ6
n3BkMRSDbAmgAbI9AwwJgDbANQHADQ5twCJLOAYyNxKbA8mfJJKZ4idZD45kIVcB
E5gcscyk5ocnR6GSaYXMkl2habTkaJEOoznz6FaazmcxfMaEHWZ5YbZmVhvOU2mO
ZJyYLmtpwuW5mqaDiWkHzU/wDhIiwXYfLn+KY7rkGvJ87mnDfGWePlKruusTGrRZ
3adrmVON+MmCShBuZbFpZTTufJXpD6EiSO5C5p+HR5l8unHokQ+TVkBxAea5CLmj
4VBgfh3xX+AQe3EG1AV5m0jwZpxKaNCW7oJWTmZCsIcfSQx0fJs8TCmf9BHnrQUe
V7Ex53xPCVwQtHi8Wt5cEEwYhobWZ1nTsFuZ6xxasJSCUZ5J6cqQYlVpt1DkcX9H
nk8GE+Q3n0RF6dRzEpNSr+FLs2EeKQ7pBprtI5xM/h1kHpkpX8XT5x8k3F8B7vJT
ZuiJFJzLVea1jTaVkmwcdm3w6JjBTGuS2IpBqGKGW9l0y1UDgkmlhMg4b02xNqoh
OwhMDtk02tpa9gOlXypPgC844tqUk2VNhaXom7pfqUbqbpR1L+lKpYGWbiLpQaWh
lHpcTaRlwZYHqiy1pbV70yf0uGUZiK+etk7eg3v16ECq3sNnb8iAQt4beO3tt7f+
hZSWU78htjBLFiBYrVatwnctTbLWZXvaXalh1kjbqly1utEKkvLsvky8q+Tt6c8Q
DAcGe4jwj3ERipIkKI+icguam7Rk5ZHjPR1MLOVj4p2Qt4d8LcBg52CiLopBIZSw
l4p02g5X+iaWLKbVjpgSNqd6c4g5WmSfi8uB+pkJLGRQkxFgMSDm1GdRjxmNG6AD
UAx27lAzDuU9QEQp9AhSGaCNAMAH4BCAFwLgBY5OOaCGWEJORCGk6gcHUXcAs5lY
7ZpfxtTGB+eaflT0xNOTErLJOYSWk6qpmTH71ubOYMXcxgcrzGb6kQaMVmJFiXEE
tp9io2Gi5naUO7dpo7vnCfS4yayH5QXid6CZCS+ImHaxauQDkbuGuTFla5cWTrkb
oSWfrkrpkKYP53FSSXCnuxfzASnfQUNMeE/2ZUHVla+5zhHEWo3WX0yvo6KW6jop
tStiVbp1JIaYKmQnpxFIp1JGugp5Dsa6yvotBq1nd5rkIexf0pHgyVisMcYXEQlN
Su+lbobzLRj8eRkKFX/h49OWhlxebE6YRawnhSXfuzxPmZwlUJFmiHhXFeeHJm7r
ImanhmjLZVKM6ZgZ4PF3EFXmDmsebCSy6gHohUsGUzqRz3+FZpSRSetJNBxjoicN
FXVmHpiehcsPWTPm8RHzn2IbkODheQDVgcIy60ucKgow5e25KNW+cKEp6K9xXQhL
Yu8Q8cAF1YlgnXwvx90VEIHxhPtfHF8j8Q/mpCHBTkLN8uwg/lSRl2Td7ICycEBk
H5AFrvDrVgfDtU4FkPlArRiD3hFxtxPBb6BYUKYOBBbVvBZzgkIx1cXjSG8MP9XK
uYFpTAiF0eGPxrVFZQbhPi+rquptYKXuLhDg/zkuoXk4kRriXlvzlVYFcWNTRmNl
eCRmKGuyZcdk0Q5ZV/FsCA5KoUreQ2UQ4HYm6qWWtilMGtkdeThuy7o2TVl+a4Yd
hZV72wn3mvlsClCFbaB4MMCPLTlzwoAT7BzImi6kiPItiI9wNLhiKmc9MLdVS8S1
XdkJwRpI7A61Q+GC6IOdpRTBmY6PkvnW2ilZw43l/2dEXO2sRRxldKQ6N1W3BhlO
AAoQ5lDDHsg1iNwCxI0AF8DZAUMbSDjg6wAwCEACABQBm+dOXIpdAsdXHVYgEANg
AiACRGaAFg+gOyAqJGYWomQASdaQAp1adVHVdFldqWk8qidcnV7IqdVkDuU5mZWm
cxZdXnUV1adRnVDFRiSjD11+dVkDN1MINzkJ1udR3X6ATlJ24ixodX3WN1WQChp0
VtEO3Vj1+gO5ScAUALho+I+ANFQj15dbkCV1s9fPUIaRgOMRT1o9evVp1rQFgBQA
pCkQDKAhmm4gIAXQKXX71UABvXe11KqQp51bABQohA2xIkrT1B9VkCVgxIE/VQgr
9bgBSOz9cm4Cg2hAiD4AfQAhUiwodcwBgNLICUhvArwHGEQARgEGH6AvtcCYEAQg
CVIeun9XfVp1g9cxVVAqyAnUEgJANvVVIH9XoBkgNiAQCnUBYL7WsSeDV3UIAE9V
ADhgCTkDAIAZgMIDMAnweQ2EAO9T1LgARlMznvOqAMACRIIAJEhAAA==
```
%%

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -17,6 +17,6 @@
"repelStrength": 10,
"linkStrength": 1,
"linkDistance": 250,
"scale": 0.6826227075497485,
"scale": 0.06654622416780386,
"close": true
}

View File

@@ -2668,6 +2668,7 @@ operacji
oXH
oXc
okTp
oilxk
GoTo
GS
Gl
@@ -7901,6 +7902,7 @@ LIT
Luv
Ltfa
LBO
LZUhrZsr
Filter
FlateDecode
Font
@@ -9229,6 +9231,8 @@ FBc
FWYZLP
FHB
FYZj
FOPZeXC
Fvuflz
stream
sj
sR
@@ -11850,6 +11854,8 @@ JpJ
JiY
JvE
JOf
Jest
JUvmNTb
xM
xw
xfkW
@@ -21114,6 +21120,7 @@ SNiF
Sygnał
Składnik
Struktury
Stany
Rect
Re
Resources
@@ -44851,6 +44858,7 @@ lts
literałową
literałów
logicznych
ldypnypc
Kz
KM
Kw
@@ -50024,6 +50032,7 @@ WQWSCF
Występuje
Wklejania
Wiv
Wbi
rM
ra
rv
@@ -53957,6 +53966,7 @@ wartości
wszystkich
wymiernych
wEW
wWGA
pDJ
parenleftbigg
parenrightbigg
@@ -55316,6 +55326,7 @@ pełny
prosty
przyjmuje
przestaje
prund
HD
Ho
Hg
@@ -60488,6 +60499,7 @@ Zakłócenia
ZLOTXN
ZuX
ZXMFDH
ZMuPdZsY
mD
ma
mj
@@ -63130,6 +63142,7 @@ niekoniecznie
neJ
nBS
njWw
nieustalone
gNx
gHI
gri

View File

@@ -4,51 +4,33 @@
"type": "split",
"children": [
{
"id": "3c47caaa0679dbad",
"id": "aa70554fcaaa4a55",
"type": "tabs",
"children": [
{
"id": "a1be2d379fe1a8a8",
"id": "3356413dd71e0a1e",
"type": "leaf",
"state": {
"type": "markdown",
"state": {
"file": "AMiAL/Wykłady/Wykłady.md",
"file": "Elektrotechnika/Ćwiczenia/20230303101829.md",
"mode": "source",
"source": false
}
}
},
{
"id": "5d3247ff23950d42",
"id": "7c19413a18f8dc1e",
"type": "leaf",
"state": {
"type": "markdown",
"type": "release-notes",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md",
"mode": "source",
"source": false
"currentVersion": "1.1.16"
}
}
}
],
"currentTab": 1
},
{
"id": "4407a5afaa10cf0b",
"type": "tabs",
"children": [
{
"id": "7fc08672b85d53c5",
"type": "leaf",
"state": {
"type": "pdf",
"state": {
"file": "AMiAL/!Materiały/calki_1.pdf"
}
}
}
]
}
],
"direction": "vertical"
@@ -114,7 +96,7 @@
"state": {
"type": "backlink",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md",
"file": "Elektrotechnika/Ćwiczenia/20230303101829.md",
"collapseAll": false,
"extraContext": false,
"sortOrder": "alphabetical",
@@ -131,7 +113,7 @@
"state": {
"type": "outgoing-link",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md",
"file": "Elektrotechnika/Ćwiczenia/20230303101829.md",
"linksCollapsed": false,
"unlinkedCollapsed": true
}
@@ -154,7 +136,7 @@
"state": {
"type": "outline",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md"
"file": "Elektrotechnika/Ćwiczenia/20230303101829.md"
}
}
},
@@ -209,40 +191,39 @@
"markdown-importer:Open format converter": false,
"zk-prefixer:Create new unique note": false,
"audio-recorder:Start/stop recording": false,
"obsidian-excalidraw-plugin:Create new drawing": false,
"breadcrumbs:Breadcrumbs Visualisation": false
"obsidian-excalidraw-plugin:Create new drawing": false
}
},
"active": "5d3247ff23950d42",
"active": "7c19413a18f8dc1e",
"lastOpenFiles": [
"AiSD/AiSD.md",
"!Załączniki/20230303101829 2023-03-03 11.22.36.excalidraw.md",
"Elektrotechnika/Ćwiczenia/20230303101829.md",
"!Załączniki/20230303101829 2023-03-03 10.57.24.excalidraw.md",
"!Załączniki/20230303101829 2023-03-03 10.52.58.excalidraw.md",
"!Załączniki/20230303101829 2023-03-03 10.50.14.excalidraw.md",
"!Załączniki/20230303101829 2023-03-03 10.48.45.excalidraw.md",
"!Załączniki/20230303101829 2023-03-03 10.37.30.excalidraw.md",
"!Załączniki/20230303101829 2023-03-03 10.33.57.excalidraw.md",
"!Załączniki/20230303101829 2023-03-03 10.30.28.excalidraw.md",
"!Załączniki/20230303101829 2023-03-03 10.28.21.excalidraw.md",
"!Załączniki/20230303101829 2023-03-03 10.22.33.excalidraw.md",
"!Załączniki/20230303101829 2023-03-03 10.18.36.excalidraw.md",
"AMiAL/AMiAL.md",
"AMiAL/Wykłady/Wykłady.md",
"AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md",
"AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 5.md",
"AMiAL/Ćwiczenia/Zadania/Untitled.md",
"AMiAL/!Materiały/calki_1.pdf",
"Untitled.md",
"AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md",
"AMiAL/Ćwiczenia/2 SEM/20230303081617.md",
"AMiAL/Wykłady/Wykłady.md",
"AMiAL/Ćwiczenia/2 SEM",
"AMiAL/Ściągi.md",
"TC/TC.md",
"TC/ALGEBRA BOOLOWSKA.md",
"AMiAL/AMiAL.md",
"AiSD/AiSD.md",
"TC/Wykład/0. Wstęp.md",
"TC/Wykład/1. Optymalizacja.md",
"TC/Laboratorium/Laboratorium.md",
"!Załączniki/1. Optymalizacja 2023-03-01 11.06.14.excalidraw.md",
"!Załączniki/1. Optymalizacja 2023-03-01 10.45.01.excalidraw.md",
"!Załączniki/1. Optymalizacja 2023-03-01 10.40.34.excalidraw.md",
"!Załączniki/1. Optymalizacja 2023-03-01 10.20.27.excalidraw.md",
"!Załączniki/0. Wstęp 2023-03-01 09.53.53.excalidraw.md",
"!Załączniki/0. Wstęp 2023-03-01 09.51.25.excalidraw.md",
"!Załączniki/0. Wstęp 2023-03-01 09.49.34.excalidraw.md",
"!Załączniki/0. Wstęp 2023-03-01 09.45.35.excalidraw.md",
"!Załączniki/0. Wstęp 2023-03-01 09.43.45.excalidraw.md",
"!Załączniki/0. Wstęp 2023-03-01 09.41.03.excalidraw.md",
"!Załączniki/0. Wstęp 2023-03-01 09.36.40.excalidraw.md",
"!Załączniki/0. Wstęp 2023-03-01 09.16.08.excalidraw.md",
"TC/Untitled.canvas"
]
}

View File

@@ -1,6 +1,26 @@
# Obliczyć całki.
## 1
$$\int x^{2}(1-x)dx=\int x^{2}-x^{3}dx=$$
$$\int x^{2}(1-x)dx=\int x^{2}-x^{3}dx=\int x^{2}dx+\int-x^{3}dx=\frac{x^{3}}{3}+\frac{-x^{4}}{4}+C$$
## 2
$$\int x^{-2}dx=-x^{-1}+C$$
## 3
$$\int \frac{dx}{10x}=\ln|10x|+C$$
## 4
$$\int \frac{dx}{3x^{4}}=\ln|3x^{4}|+C$$
## 5
$$\int\left(\frac{3}{x^{2}}+\frac{4}{x^{3}}\right)dx=\int\frac{3}{x^{2}}dx+\int\frac{4}{x^{3}}dx=3\ln|x^{2}|+4\ln|x^{3}|+C$$
## 6
$$\begin{gathered}
\int\frac{(3-x)^{2}}{x^{3}}dx=\int\frac{9-6x+x^{2}}{x^{3}}dx=\int\frac{9}{x^{3}}dx+\int\frac{-6x}{x^3}dx+\int\frac{x^{2}}{x^{3}}dx=
\newline
\newline
9\ln|x^{3}|-6\ln|x^2|+\ln|x|+C
\end{gathered}
$$
## 7
$$\int\frac{1-x^{2}}{x^{3}}dx=\int\frac{1}{x^{3}}dx+\int-\frac{x^{2}}{x^{3}}dx=\ln|x^{3}|-\ln|x|$$
## 9.
$$\int x\sqrt{x}\ dx=
\int x^{\frac{3}{2}}dx= \frac{x^{\frac{5}{2}}}{\frac{5}{2}}+c=\frac{2x^{\frac{5}{2}}}{5}+c$$

View File

@@ -0,0 +1,36 @@
![[20230303101829 2023-03-03 10.18.36.excalidraw]]
![[20230303101829 2023-03-03 10.22.33.excalidraw]]
Stany nieustalone:
![[20230303101829 2023-03-03 10.28.21.excalidraw]]
![[20230303101829 2023-03-03 10.30.28.excalidraw]]
![[20230303101829 2023-03-03 10.33.57.excalidraw]]
Jest prund.
![[20230303101829 2023-03-03 10.37.30.excalidraw]]
![[20230303101829 2023-03-03 10.48.45.excalidraw]]
![[20230303101829 2023-03-03 10.50.14.excalidraw]]
![[20230303101829 2023-03-03 10.52.58.excalidraw]]
![[20230303101829 2023-03-03 10.57.24.excalidraw]]
![[20230303101829 2023-03-03 11.22.36.excalidraw]]