vault backup: 2023-05-26 08:45:39

This commit is contained in:
2023-05-26 08:45:39 +02:00
parent 3d0413c838
commit 83b51075e9
10 changed files with 4023 additions and 30 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,520 @@
---
excalidraw-plugin: parsed
tags: [excalidraw]
---
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠==
# Text Elements
%%
# Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATL
ZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHAL
RY8RMpWdx8Q1TdIEfARcZgRmBShcZQUARm0ADm0eWJo6IIR9BA4oZm4AbXAwUDBS
iBJuCAA2GAB2ZVq4AFU2TAA5AFYATgAtABlJAGkATQBmAEcAUWw00shYREqAM0CE
Typ+MsxuZx4AFj3khL3R2JSeLoAGHkvazcgYHdjRnkSeHlrLhLOuhISeBL3CAUEj
qbhVLraS7PS5VWIdHijE61DpAyQIQjKaTcC7aDq1T48KqjKq1WIJFFA6zKYLcS5A
5hQUhsADWCAAwmx8GxSJUAMSXQVC2ZlTS4bAs5TMoQcYic7m8iRM6zMOC4QI5EWQ
JaEfD4ADKsFpEkk4o0gS1EEZzLZAHVQZJuLEGUzWQhDTBjehBB5LdKsRxwnk0M6i
pA2GrsGpHiHBUCpcI4ABJYjB1D5AC6QOlssDzDTHCEeoZCDW3FGXT2tSJobmDCYr
E44LuYfrLHYHDanDETqqe0uHQH5NrZUIzAAIhkoGW0EsCGEgZphLLJsEsjkC0X8E
ChHBiLhp8RewkSaNRtd3rF6a2iBwWdxC8Wb2wJTPUHP8AvW3A2IQNwUwzAQo5lKa
8QLAS5AKzQDgJA+JLi6Do9g6BJfmRVFAIgqD7iAzDDlGb4CT2K5EXQnCwGceDEOQ
1DjlGFFsJgzCr20ai9lJAkkXojDwN2bRYiuP5amQ2JYjJCkOkYkDYLmWJDn2W4Tw
hOTYR4HiQOcUYjmJdiTg6JCqgkqS5hk0pyW0Kp3n0hJum48jnA6bQq2rM8/lJckG
JA6DpMwm5EmeKsqg6Sz1LmZxagswyzmeejUNUySvJw0ywDU/jELUuS+zoylMMoy5
WKQ9iCVqLjPLmbyTN8yF8UJYl3Ik+znn45DRn0952IQ7jjNKZKXkSYkkXeGz4RCx
rHLPSy9iJFFam+NTutw8CSWaroyS6RF/jm0LSkoiKETJc8zghDpTnmxKmKWqoVrW
jaATObaKNiK6Tiesk5LU2b7oW3qrrk1aBNuraxu0Cb9mm/Etu+zDlr+m6CLutTGv
k/tZpJLoVJCqGlscgcpqqa4TquUbcrk5IUaU9H+0x86fOxqEkKJAmK3ixqtLkk62
v2fGui6mnKqWrTEL+aEiUQ06Hso15LmI1DJuuUqEvKpLodeBIBqmgEOhGxGSfyti
OJK9CsZAvq1bPDXhuCnXeMhGyri+WaibOpWLpN+JalJSsTlanmct4pIPdahJLhed
4gupl3abd7QPdqL2z1sv2NIiqoopSM9Hfi425nPCzqz2GzWu1iWU7TmLM4j0oKp6
qq8QJa46vEpOwqu/FRYBMlOrKqvlfAgEnO+YKSs2+77Mc5zEQItWm8VnvXbmD4Qb
Vp7KwT32JfHglJ7cmfs9KVKBIRLXdOyiWtIBHS+1agyjL5mu+8OBDVvWgvpcM5ud
qopCULQ3nI/5kCiIoTSwrC1UemFIJ30WoA/K3wkQeytg9V4AkvgUhEmJDys8wDV2
gbJSE4loQzSBtDbSpxuhiS6O/LBODkoCRjuSQhENwHgXwoRYSJEFZ7zAHQghYkmH
WxApvasIc0YY2dnPKOskkiWTUihROD0hE3AmpTLOUDaF7Q+E9WEBwTrMJAqXOa5c
4qV2wb3OC40SRg1JPwh6AdiRIV+G/W+/975wWRopURVMBFzFtt0QUFJjHiNMfPMy
etCoGwVuRXx9sAlO2oWY2SYSDgRLIsxJJyJZF2z/hIgBcw7GtRlk4j+3D0n0UyfI
rhBj4Tkn0uxBqzEpYy0oQpUi2TgmSNKK3asEIO5XnXuRM4UImly1ad3dpuTSiKNc
tPTBAzGm/Gaf2UZ8SQlgFYWJdh8tUngRYmxMp1kKlqLwkvDZxEtl2UwtE/xFcgk0
OOQRU5HDtn6MioYjOgSVkdLWScoiTyLksJ+Zs5ZlTXnVJsjfYpfEUFCXQbvI54F8
kOODnUyF6zfnnLGXc8CVyHYfPslU9OsU4lcKauzAi+IpqzNyji2JqiXG4LMu41Gy
kvES12eE4qnD4VwWeqcT4T18bF1Zs1DmCIuZd0+RM7h0irJyP6STJlFMxGStcQvW
BAUEHE14vCEGli8ZEK+tyheV0Li3CvAcdaVLtUaIOiLY64suG51JPsQuWtEGNRtT
CI6YtDX0t6kkJEA4PYYPqdavEmjDqi10bchJpQTj+U+oKOV/yNJiXDba710aVUMr
WUkASQtiLcxTWFJ6TlTjuXejYrh+l+qcSin2FmCqyYeJZXSnJqrJmQnhP2fakSSZ
sxapzDq68uHEjxEHD4jcrWpvmbLFpXK/WYT7BZU6atLJ9OLZ/WdiyMXZuSqSViYl
8ZqWZlq1N6SUltKxSBCEUIYRwgRH2m2iQ/G4uJUazpkJoTngfcs+yNKbnULDNXCA
cBAj5hEOEAoIHWD6CLAeBAAAFcDzBIPcCZEIBAQJ8ChCgJyfQ+g1CHkQ7+TUaBTK
3u/bCeEf7ALOAAx84DRQAC+mwSijiPBIBIABxJMQg2BNEIAgJMiEABCLJ9R+E0OM
AA+iyLoloFjiHQCsUs6xLTbDQLtLSXwRFEhJCeF4QIYyoEolrJyyELj52ighPYQI
QTEDBGgNWeJ+xPVEi8YhdZ0SYmxGgT4/EvgFy6CF85gJWzUi9GBMo1o3Tyh5PyIU
wpFziklDmOUXIEtKnIBwVU6pshQEtDqPUHovRSDNGhl0NoED2kc46EMVW3SleU1a
LkFRszCADEGJ0QIIzimjE6OMrYEy7hTGmTMHWZTEDzJuJ8dYwhvhJPjYRWsgSMHb
E2EMPM1sNg7F2DgPYQzdMMscELQIxyTmCIebgH4vx1iXFN1cmQCuze3K2Xc+5rsh
kMqec8AIEJVGw3+e8aBHxvbrNyV8nH3zziw9+UjuQAJfOi3MSBi7tVQmoj/U+5E0
ftpzZpUhHsfXeLMpj7+tEjYfooufM2xOs3kWQVcdGccqFcOcOsk88jyK08vnpCFe
7cqc59pu75Dzg5IXzSkZx+PkoOSclvaZ9VildPbhSDdmLY006J/avRC8dMgIbc8Z
XgveJM4QhQqhjPHKHwyifKn6PU3k5or/Ypi8CJwgIujQViCuEo/3kkAu8Jn6ClPT
G1Z/uUrVXrvpk3fuef5WdQXDmxcSXk4rHHYi0vilOvzq61P1Pzc2QhGvUXuIaoNx
JHCx3OdSHB8t6GwB0fapV8wVwtFQKn1N7ri3uP1ODEIS+EovX+8Ioe+eKhLRBea+
lAY3ExnJqridwtdn03cFZ1BWrESd1vlH4hbji6opa/ZIDpOvsT4nxxaM738/Q/KL
j9mVPy8KstwQ4j5Sgbk4RvW8y/GR27hFicI3wDaZ6C88QgkVwg4FwFwbO1O5kMiB
y8qfc6q8C4c4eXy/cQeQ88MXmMC/kqBvu1OZ4BUwsmaV+vkKBgUhBM+YA9EZMWsI
abulBmq6BUqFYZa3QwkNmSBeBcCVBJi16cw/Y46ckZ4V4AujOzBaBD+ay+Uui3s4
h9+jO4BXwkB1w60lCv+ghca8Qlkhk60qhOOvkKhcUUBGhsBNBVYgWew90q00hyhr
EqhA46hMBWhWuxEyQlYvwFwV4Qqvkn+JIbmP+muqy5myeMSgGjOAR3+feNBCIeIc
C3QZsCMSC0RQRsRsumEJ0ec1in0pOH+wCX+6R1emR4ESEMcW+r0mhbuJhah0B1RM
hNa08uRuBaq+B/BrB/+TRpILR7+aa+0XqUaDq1OwUrExIGq9hzE7i3wU0hhDupRg
ijkzRBq+R7KySnK8xf+Oa3RscNi5EiKwcoc2+AhWuOxvR+RnOuMUubeIxSxPRKxG
8Cuwiyiyq1adxuxeREsiKhS9+1aV0lCpwBBoBW6QyCyIyC6CxcwoxAJExO+2qT+5
+r+wxcR7x5xbKCJL+l+vqkJkyhwW8KQnsVuJM264Jmx2hYA2R9xexusBUBw+yyaI
RXy8RKEzwSRxIKR/6L6qEs0miBcZJ7heaIWKEhaEq9kHeZywK1O7EwCa6EIlqjeY
UReaCDBJRWxyU8abCEpXeqO7euhRIqENwlOouvOSIV8tSFhOJshIhChuMRJZRTx2
8MybhqydB+wKp06cwBKRi76NBMMhaKEw++RBxIc7wxxnROafplCAZb++Rc+baapK
s/U5sQ0bqwJ3CT+Q6RajJbB7spIfwZ4gonxAygBViDxXC7uy8XwFYRhOyMqakk+H
mKR5ZAR5slCopFB7RLBMh8BsqWSbuN+B+r8vxcBGJF+MZSCi+Zq0sWeNxNBaxVMw
8HJvkk5y+M5zpXycZaZFZnuk+PuJxqy3xjiShvkY+y8XuU+1Blph5yKdpgCK55qa
52Z/+m5+RRInhU5K+s5lpL5SCNu6Ux8WU/JqyP51+mOt+Q5FpCZOy6SsIi5rR+8a
R36GRUF6+oJasbcYZSCtRzh9RkF5JpKLUiJWJqx+CDCfCnxJKgBw4IBqxnqkauu4
ZtCvKT0rKxZuqk04MFFcBNqT8WZD0pMCkMxhpru3ZdZiBouBFoq7UfFJKPFIWfFA
yGZYqw6V6WuOqE01FrFUxzaQlcxqlqyAl5MnijaOyJZ+qVacBG+GFkxOydFdqJO3
ZMFpIOBfRdlZB2JKFskVlW+NlPKZaYk0Iqc0Il5nlj+Iqz+Y55BOySl0lEqJKo5S
JfRJJ86QFXyklEViVqxF6Gx+laVCVxFD0P58V4VRF45+xMc9ihxoZ0hJKTlcF7+q
uPS6ucVcBdVLl+RUyU8yF5JIFWRDpSuqp5J15R+5EnVO8X5oVYAjVpwXOPBUJ/VX
Vg1pxTxYkmsfh9pE8A1E15JJp9erOCppQXp7yPplpX8GeXhq+5ER1RK8Z5JUKzOD
exSRV1OhOF89EDFhVL6ERjGL1wu3OaStJRUnEqVUq8um1i1Hps+X11yP1NBzgjV6
0zVc1UNdsMNJ1k14UoKWs4Kx5CKFVQcIZYcIVd1VS2N5pB1Yu3wEuNhIWq+7OpNN
SEhvkaUFu+1T5BODNONt5OpL1nN5NkKSpwk7p65oNfNTNvEu15CbNMh8Ndcauncy
NFEiiIira+5XyYNiuENFNstbcqciIKexNWuGtLkWtkKA+gkgZMtY1TpkKw1w5cNf
1it9GXJq0/wZIfJuVoNJp9OUVGkvi3Jbtckp87O5uLODRjUpS1Y4l7NcuX8LuNZM
6aFO6kpcNcd2OzyJa+V458eTaCkzKKiatUqkeZm7F5w8I/w2dRBdeUt4dJMpFccF
IsItpIt/+dt3NO0b5pqnsPMLFt1al3lRNaZuwgeg8zlI8jFzEVFwBWlEtie+cSEh
mIl5ZlB8IvaGdO0xBQs9cKIh8yJlpKQjhMKwtkKrU9MGsq0p4TZhef5WsVwU0tdE
tv0haQkNwBV5Zk5fYlYyq9krpsK21WumBo99V+RmkEUbpokS1qy5exOQUZ4ltP9A
aPawakDXyueYML0NFZ8iDQacIKDbBqs6sKZ61Gk7BX+go7EHueD/+m9KEwc7lIDp
DJI5DxINtMhkZQUFdvtYUjD+Mb8lD/9LpYDf92tPDzD/DLdEZ2D+IuDkNNOkIZDf
DrDjqUjyDsjmkKjMjEjvU8jPsXBKQ7ZEtOMDMVml9kMUpchpwNp4tJDgsKE29t9W
a7eWkmpfyJ9c9bpBcZ4S9Uphw6MLwumik7+uw0ecpwpbZI6UpV0/iqccpl1uUgDI
0wDMhVh5qthXZ9k25V4J43jlhEUqTakdhcJGkndRMccPdmD7egpBa4TouuwA5L8N
5WjeEkIFwMsPhwVQ9B9gkypEDAjTJ+UzMBw5IlYDOdd9CDdnw+MAu1a8Q4RaNJlq
aclNTMdWRrwLJPsyR8Fj0SzMlIxaziRvw7JWzlEzFFaU0FlcRWkVJRZJMpzb05zX
FcReJlRhJ2tpaGD9zH0ZjKJtaaJjUdzokDz3zlp0J4xQJID7z5anzFzILszqNb6C
zYU/trtvJwdUpeT0saTvlYU4prjbDT9UZnDDVctTVCtnt1D7jU0GDM9qF0sYJKV5
LOaB8iEKC997d3CzF/KQV0+p1U9vdW5UhhtwF0NCLW52FZhrhKzGOCEFOIlDhEBO
F5hTTz68LtKW5iFxuVDBO/Rmi+MfYYCr5GrwRMtOrZIerOiXD+84rLhDR7OprWi+
roztl6agxH1drnq5rBr/FZlnFwLGNkLAVAqHTqx0x70elUrqanLgVe5qxMV4qETq
d0xBw3SRTXlSdpJjLsd2VwNouz1cNYtuNIEeblpxtjpJu5VgcKEhNmFOd4E11gGa
eMr51j5D09bsNILK11YlsaZbb6N5J5tQ+ZVmEvbfdwrqrkRw7oKhKDbcBiqxlaZw
ZRxNV3F6avFBjIEi71VQrGBI9iT7V/F2bhsmb0MtjpBQxSV6bDLEbQhFjohpwzdx
S6VmZLVlhLTXh/w6Mwb/FobsxRp17kycLr6arqxPraJ1aVzHxWz6leqvrHl5J5R+
JVR7LAbXLMbjRqJDxAyUbQbPLk1oLgJHR/Fbl57E94ElkFmIchkQUtGzrAx9FDlo
6X6MI5DfwS5Oy2H3L27UqlGzH0srHUHHHaHUEwGQIYGQYkG42MGhAcGOG04yG4nF
oaAGGcOEOuG+GhGMgawJGf4hW5GgEPH54LH4920KH0bX7TGpQrGRQ7GkAFQEg+Ay
gfQiGbQkg+oTQXQFAHAtosQpA+o+gzgwwmg44eQQISmywqw6mQImmpmV4Y+J0WUs
I1HsIXQxmTwBEnhIWsxOHwU9mDo3AccYxwkhkNYM8aIGIWIunqAgydLc6Sy2pEAk
WymKOVorobI8Wio6AAoSWlwloYoEoI2so7XlQyouWaoGohWQIxWBoRoLWpo2A5oS
AjWdoeXDWrYsWbIzWlQPo7WrY/okgM2PWrYfWUYsAg2zXI2yYqY0Gk2uY3WoOW4J
Yb4xw2NkBowO2G2XAaAAI73jYnY3YymokNwV4fYAk52E4U4b4t2Knooy4xAT264i
O93c2ZQH2CG0OT0SkBZ0B+wQOd4D4D3z4UON2sOonCO42EeuOJKc7qtDDpCuk189
tp1Oz673DdPZp0zhe9Td+7LHOgKWpIN/+JTH5LbYpfPeL5Zzele5buU1t3VWuv9x
9Xx+NSKR+upFk+pBhf7EsxbeHgH318+NJeyUdDJjR/xYLhHjUyVdXAvOa5HBwlH6
FNHidNXydEJk1ZIyQIc6Mz3BVlvl71vx7dbjkciJeIukK1XwyV7Mhs0iQwivvxJ/
vu6lSkIlCRX/wmj4fVvSf/eKfpIdSJXaj859JfZ0fSQFIr9Q7KrQHM7NBBIFRqcj
Zxzbdyr+iwfxePMYfSvlbPxeFWuwkTkJE1EvhqbO0zf/7YA/fEpQ/X7+KU73po7X
y1YGX9EwkNhNLYUI7hd/+HvSi3vyE8fvEjVlkrURcXH/+qcbwKQ/OhbYUsvWr+6h
w4xF866LPO0uL2fNBdv/YBm1H2pb/YvH/S0l/wd6/916FEd/inSrgidvwKGCTtdz
W7Sd4McnWAYp1QDKdsManAwBp2IwI4kccwYAT/0fTr1eeDydFJAIzAsY2MrYOzt6
FtC2hJAMmbAAACsAAsgACVYgSwFgbUE0AwBYgkgUTIQAoDDBFM8AFrKpjWDkANgr
YaLhzleBb4SQckZCHjErCpctMoZCyDOWCjeENYuXOrE6GZ5zUpA5XPzFV2IL6s+U
ehEnFSA4A0gmuS3DkJlg64QAuuSWXrqlgG4ZYFQw3HLHlnG5FZdQ03T0LNwqwWgH
BtWJzFVwcGbcJA23I8JNi6z5hDudYY7gNljDndpQl3STjd2mx3dUAYOR7uj3YiAs
5Eb3VsOtl+7lhmuFQvbP9ydApABIhkXRGD0uwIAvsMOT8ND0gAPYVwa4F7Pj2R6Q
BUe7QjHr9jfxwhmut4EHPkIJ4Q4XwbIaHFD1J46dyeyOSntTkjwml6e/Nbsunmfg
i9/ChRM8EiGWYyEi82g0vDngIbJk1qZ/CMtXTDrsspoMcd4EXFuCUoW+81ZyKtW7
b5ECBVHIgYH0ESdtbhaZA9CzmPSEwF+3HEljNU75XUroUUGjG73JLTVyQ8I4dmX2
eL7D5SCQEFKnGDgW1K+G7eCJZHWj5xdmtfV5IPiJZBl8IWeEqPWi8SjpYR6I/6gi
nHjJsXgMTYNiyN1pwj2RG7FOK1EsjQhGCjREEb8NsTCirYYo+/n1W+FdtUyQZAOP
e2TzZM6IeIkYpKOVG2JbY2+W4MFFmoERq0Oo4hj4j1gpAeY+MU/lv1t6sjjRT1K6
BWG9y00+mMI/kWyMVq/A8Q9sfEPRHPB1ItRVIgkTSPgZpJXg/0E8O8BRBh58RhkM
McSMSQ25LIa0FNnaOShj8D2geM5A3xf48xgx35EVsB34o6prgPw3UbVUBqwV92Ay
cyOeGDjsJhahYyahH0ObWUR+3CA+t0AODpwlGs7ZtPnW/oNIIoZqSaCiGTQtj8Kf
LTBnMhaYhQzgFfPeq2MMESVzBdJI9CR1kqrt5Kr/dMlcw3EewtxXkaAXWDE4QZwM
8A+bIgNk5IYUBymdATeEwEEYiMWnXAXpzgiriP4MUTQS9CPEMULOYAKzqUBs7lBo
cEAPoLEGGDcYAAioQG4zYByQMAJYO8BgmkAAAgmwAADySYZQKIMWASAJBkXGQeCE
cjHYuCIWc1KcDUGmYCywCAEA8iBJ6DIhweDgoCwIhoxm4xg3zJV1NK+jLMBEKsFe
GokRZbBUWBwUNwkCuDksrYPrmllh6ST0AI3PwQVgCElYZulQObgt0tDrcasK3KIW
t1a7ugNJsQtrPEN26dZ9ueQkcOGEjBpCquQ2OsBdzGxXiyg6WA7kj3BwxY1MTodE
ZSi+ChQ2wlQkMPCB+61CDsymIkFWD+ALIWhEPRYST1kmw94e/QzyTuD3Bo9jwYw/
ZHZhvDA4BhXkyAJDgWHE9Ohyw/8B+KLrrCaCWYxqM7gyTR1uyWdS1twnqnF9Dkc5
UDph2ZrQoem4o7cQMU9ZOsQIEAlEWpVIp0NupZHElsfwNoZjjCh9HmDsLmSJ9IBk
1IBOQ2OEilFa0HGRFwVibkgpxADFsicIUrMQJpgoREAJFLxHSoGJ07aWXmta4VPh
VrRaQz3ZbMtH0ooqZkGJJRiUTejOSXqJCybVkTgt0tKoJxn6JkzYg0UEaRzgiHs/
+tBHRoKgWRFdbMXCWqXhHkGvCtY7wumtTgRq9I9x0paJqtEHCFN5pS0B4Y9QUT7N
WShzTzHBwAYs1HhFNM4p+37Be9YQdrZ3OnVFzdB+ISEEOMJAnF2w9g7ONEY6IehB
QXhqcELB+2H5VB2cvVMjkx0DF6F7cEsl6m2PQo+VOxS/C4L7FX6vEdZXU6knWyxE
3B9IA4eiH0m1mp1Tm6/UoN8ChBkjzmfHEeHa3+kl99ircNzIHG9wdNvZ6vcpIrT+
Axx72LDKaMDQdklseyYc0XKhDeCf1EQMrLEu6x3GnCokUsMSPRDsL4yBImc/aGu2
9HyQh8zqUSAXTtZOzEWs+CKMRGKGBF0ZlYO1ubJubYokgr6bpAKNblmzS65lDuUW
0hBNDBwfSTZrEDtbNS+i0IWPiwxsg98ugdrRGWAKvCRjxIVYE6DYVZxLydZK8iSt
LDdnVgPYQoSmezixnQUUxHwE4fnmCj01qRRIlqcD2SAskdICIIOgcHZx39ZGz8+s
k9CRDvy+SccjGqNNXm3AQY8XdqCSCIHAK7qktNmY+3AUn8ZEX+GBbzJlbx0wFOYt
QlcDgZv5a2CM7Bc4VwX+NTgjbLHFrwGRfALMOCvTPgsLyszaZVCohRTLoVkKGFKC
BBQe2qg6IEIQkXXAQtkgsRiQ8lF+olRDos12+lw0se7BP4X0Iau8/Ng/MHZPymo6
0SyMcDjih4iYKs4sROx2RliUgwkFfkMyphTySqmJJMWZFLS9Mt8NhfRn3LhpdNUE
QtXphTVEgBpdM3QHpC5RDqnkJhGo1ed2K9jUYPg5hRRSWxoZnsPqcyRyHYWHAhxr
ghsWBUbWNxlpFILim0R7GULVQhoJ4aMcoMMhTywkBST4P4hsjKEbcNhLJjzDFGdQ
7W7wfiKhH3yNCBIO9SQs6IJD6R0YakKaFxDtbmRcFacHkh3EBwUEdMPSo6LRE1QD
LDg78omNxD+BjyBkPoz4KvAJASRPMAyrSHjC5How8Z0IFZSnGeCu1Di8IWaAMviD
60EQlYGMbwxslmRKEeIRmirSYY8wBl+UFSM8DkglRJcRIFZePDTl+Nb6WSZeV+nW
IupvcehFZfhEnQaLhoxiZeY/w0Xky1Y/wDKAMmTkjMbIRXBEPVBVn/FKwQtEqKyX
eqYr4g5INOR7Cmb7UVZhwQ4n8ApCrQT5hy5iDH0omzEbglYRSCrPiBawZoHcZ+Ed
AGQogY4zhEqJxDVj1KXqVwJyJeAnxD9oVbKx/gDhaiv4QC58pIFdMPjqKYm/ytla
8BsISRZo1keUufLyatRGRtynwvqtsrxAXgLwX4Orn5XkhNVyQU4DqqJB6qxldqkG
IiAuBCRqk4kc+ZCG5FBRiIokTFras/H2r/VTqskC6vBmg10YzygVUyrjjCq2Vsax
1YGsTUqzXgcIKzEPiuBXhWVvqh1QGudUhoVZSxELPAh5Ksky1n4w1ZghNU/xpcBK
1iESv36AkTo2Sg1U5FbXgoDSrqmVYSqrA9rSV/a2ylpGPjkh2SGvHmTKqSCD4bgQ
ktuBSB9WfjZ1ckedaHH0JLq4aIWJpcFGJBlLhJ06z8SqsoRqrJmZivefaoQTAETs
fardbJFFWfBBwEq4eEWmXmzq8+Hua4Mm1WxsqrowcW2R8ADIi5l5ZElCCKPxBVz2
lbKpIBypuBcryYYKoZEVEhUCpo1UiREd0ElxIRqwv8D5c1G/Q/KCkma2sinxogUp
qO+KnWSxC+WWNfl9it9Y8sBXnhgVAkUFXvPBXYbgsuGjjdwieVk1BwE0N5aMEw3T
kk8u5JVTslWW2YV+mygEMvLA19rv4a6p6Hhv3iChHCIZR9I3TqQwaY4cG4KAhraU
gbkC4BRCLGM/Vjy75D6kGE+oFRLKyVFBQ4POpB4jRnKJwFWV2mLxnrBQF6kTWuqa
Wpxqlp6o9p2sy7Ere1Hm5Ao5ABD6NoQNhPjv5peoRztViEXVXrTC0sQUQHfJZASE
Y1w1g4eIcYkOFhAn9L1YBMfKcHkoPIUtSa//PDWS36lJo54NuNZsAR9QCRiISAne
sPUlsUIFkSXMdB7GzQ6t+8Gwv5VmhuQ+EI0L+WzGJwijj59y6/F+hCyft80fYDtb
9QDgstlsnwGwgpsARjahY3veNdLFqDs4rCcpI8f8EQ29bjUFKwpFfF+AzLfqKcff
BooaHkyHlKUcjm6VIhEw/N0m36oiJAQhwlI6K17fvBB0CTcxEO+7cH1QQHAbI+wT
eUDv0wgwqYBYzmXRHu0UqPgyXRCNCBFlhaL+qY6WCGSChix2cdBY4IaO/7pxllJ5
eCKghowAgeYOil6stCFoXBBwzkTbSeTZj74G4dDDdEzscif0lINW8lE2oXgewB4+
MCNSNAhiy7NBvwJhgNBsjK7R8e0GYl0v+DKC7tAunZT/AzVWYelYWirdPDN3QhwN
y2l6riFuDu1Gt7wO3YzmTlgtFyi65WW7rA1qwL49ZCEEhr7iIRAsUq+uNyouVu61
m0sBgiKNq0ib72FmZPLDpe4jaMafkXtR303VU6ec+e2HRfGi39KdZo4j4ASRODJt
N1POQXdfHPDloP2Fu1OlpGEgA5V6Aqc7TnGQgD9BIIsINTwHMVd7KEPe71TzgH3E
Qh90UflaPpPEuJQM947IQgJk4IZ5OF4h8aQEwwYDGQ6nV8cQG05kZ0wdGJqOPofR
awp9gEABYPt0zz7VqgE4CcUGoHgT8AzgFgVhOYBMCkwbAwYHsH1BtBOwXQAAGKiZ
EMxALoAACl8J4giLlII0w7BUoWi2iAmKo6IQaJDkWNX4kSZLSvYzE+rKgAM7UZAR
XEnzBV24ApNMWwURucOLrCNc6QEkpwYlm67uD+u6WRSdAF8FjdVJk3QITEPQBaTK
shk6rBEKIM2SWu1WQQ61l9AJCrJSQ1bikLsmnd0h8YTIS5PIwgZ3JeQgoWtx8lbZ
hZX2skGFM2yoATgphv7hFKdA7w10XEi7PFNKl3YYej2PoRVJmGDCIAwwt8KMIGhe
8W9uPaYXobmFE9ZwiUs8WTzwH/5I8eOdaYwulrVSix47PFBAgGm6ttEXrRI+tJvp
25AKouWIztRRkhxdRdUjBfzPH7PC7F3BfI+3iiYOx/s18sAQUYFJpRqmZ08CM0dW
QeFhdICEZk/OdwAh2IrzcfoOBBh1ElWj7AY8cFTjS1q09M39nKx6ndNXF/UkYmb0
a1VtAm+ReBbTNHSzqJ0gcaXhtS3gq0C68M/AWROmjIQfp7LI/vrVtHnHOkYG0Msn
soVLoZp9xysYTIigQimYBvaabrVmkPGZCJB39EjLuMn8vjn/dWaQad5fCTjLxVlI
xzvQ/pkRYAnY7Me+OHoT5J6f407jKNa9R0zx94K8cWMS02e1/XvqsllndIhaNx7W
kTKRpAj8Bj/VdHrQ1wlw5+x1aEef32MBlDjpXalHovbaTVgBbLN5vvPH5inJWbKL
PmtNRGGr+w4p8PtTzOMgnFT0sGU8DFBiDy/WCpijsqbZTEc3WhM+1RakipBME5P8
YGUzMeMUku0wsterUz8h8Euy1aFdQDPiZGs5eoRdY4fHA1DzFSORgCh7RGMenfZ8
TXdpwXthh5GiDpntI0dqanAKqGa8XJ32rTxmBwiZk+qezoYkcQT+UfYCy3FE/0CW
J2OPpXU/6FniIivBBvjpwarGqzZMYs4KYlpFHgTo6asy2bUbCF5CX9JE4TK7O1mh
ct7OgwOfKiniyg541DJeK0MMgbxm++8ehl31dCIAOGA/VgKP0n7KuFGIc24o/gc5
Rz/ZttBQMs5UC6wNAiACwJ4BLBWQMmDoEsGYBsC9gWIP/aQG4x7AAAKn0CYFwHwu
amRA1F3LAUqt8/0G4Mppon7AX5QqjNScEgJvrgQ+kkqGMc8b7aLZZQCg6YNNalzi
0DXMSfYNENxYWDUk7rj1xSwcGFJxFpSTwfyyah+D6k4IZpNCGLdCLy3fQUoZixGS
ZDcQv0JZI8kGTlD/WVQw5IyGJhND6YbQ7D34vBHvJPhwcLZE4KWGcQuUusDUM4D7
ZDsxB4xfbBDhxSrskPcIy4d6HPZ3DMloYRlJGE/Y/D1S9aIEYKnYZ5hBlsqfDhWF
RGc0MR8hYTEzzyliknRjApIouEYjpW1EQYzMdtYDi86SqZ2eAIAHym1KdZYiGLMF
Eb9lFtIs4VzwgoSnAa7UhNpaTQZUty00Vk5v5TOZfNmZLpa4bDKlEeos5lIvK7mf
srDSS0X4/FtdABi1iSYLVx1EI3ktgmwBu0Wqy+zytSNqkxrGqyXN3G5W8OAzO+ka
r6OWmurhMy43n2CgPsjTg1qa/20+VBYptmFca2TsmvMnDqrwI2SYrX51ztmG1o6x
Py0igIlIQLBa1dfH6Gy61REc60PWwuHXnrJ116ybKKu7Sy60ZZcaiJhNGc2OzvSP
gHylM/G+ENhCTXiZLRymxp1J5a3SbWuclkjfbLXDSauOrXrGSLYU320nOQBpzcAu
c+vqQF3iFOO+vfU+I3MvjNOx+98WfpvSo3rj6NujMW1PNATzzHGSoEmE/OxAmBPQ
YgE0CTDYAoAbQXAMMEGAyZSAowQgGwNAO2g/zhEhA5QCQNoA4QiQZNlf2gVJpApJ
mTSNHs63pRKwOKwg9wH+BCzoxDjLhtxMoMhh40Emj1ecsHo2C7BTB1i44O8EkW2D
5F+SVNi4PKTeDdF1sFNxkPCGwh3t8Q8kM4vSGTJ3oMybxb8AKG0wkh1IcJdLXqGx
LV3cm3WB0OKGPDhUq0AYaq7rRRYxwC4Epf8wIW1LVhzS8HkDinayhF58HvpYSnOX
7syUtw4j2LvpTPsPhqywWRrP4w7LaUwniVLCNd2pzkRyqdEayN3U06bx449WHnVh
KZTEizhUwswiIogoNWjokzp1wOVFK4VF0Rw0DLnzlePfCms4tMI2sqT6tecpejdx
AzI1gSk0TrNPyx5WzJsIo7xtWjDoUlqyYq9SwusczzU2i3PUvdrlgiuzhaZCJNeA
dP3YHfwvk3NBX7hLi5B17OUulZNnADox/N+BEv9YtXyION+Wd4V21ObU6Ps5K50h
hsohy+wcRo8g9BpWnPTdbK5f4btlA3J5bulem1CPbFJrb5deiAhDNY7yQ6JhPqb/
bySqjgegkj4MkukeH1ZHsjSsJ7zb0kaZyJDu6i6YCir1szB7R+M6hZUSPw4drC6e
RSg4IRXMyEPhZup9Q1ySr0Vs4PlCaSla4QzwO6HayZSD1ViqUeJd8ESWsPzF7MH+
z/NxBEg1IHwdiEDfCeWYp07i9cScHlhMjoHqS+ZOoqmlwQkQkc+Ja1FxOZOQHbYn
J+hZPxLEi4tEa6T7DYdtaynsHWNv8R/QFxDiCtep9q2ydNP+K6XBuB7rJ1frWtXT
0EuU8DOMpCzK8PsGvc9jt7453Tv5lMUNWKR0+d9KzA0tGc9OBkztkRMDI7FB7U6k
p79varOB9LJmuMOZxjQHZpXFKB4tJ4iAycHP45fMle3BDoTf9sa1zb4OWXiMP03n
gsGJ5opjP87LCJyaWVQp4UOP41Ai6nKrIRmmONtp877XOSOdUL155ITeUiEtx6P+
6mzxZ9BXiCbqp4KvdiDi4MqoOD2+UWaADn8SGdPoy9Tsti1CRUvCRvDE8IWW+eF5
/FIMsk8PIsjgpKdjM3x0QVzKZ5vY9DsAMetHmCuJ5jqXM0Q5v6z4R5Ar8eUc34e+
kjGJwc4CkegosuaXVZDl+q7ytlm+HWVPV22QNeBNur9Bfc4VQbmVhPc0zoB9a/AY
lnLkzoyiQisS73rfSPV211EjZhnB8lKxtaC6+EYiOFHNWqu7HMdQmubnu9zkUJK7
36ynnk1dhqa9ba59hIXOa2Va6ILyu05irqasSfLqunLHIrlM/HCCs3p4HN67oOE0
6fJRoGveOR3GjfZQE0VoAxt7XAryROKaBwQ9C8D7XHBsX5ZKM2PXBs3trSC2qmnU
/LLcuqyvLnOJq+x1ClemZLjAgu4/s54Gr9DM4Vu9BnGlKr+IJCKAl0Tv13yn9d69
sePcog4LYCcsjflvlpl8rZS8kUe2GdNuAi8118m/Z5eai/pocxqYDJ7xij/3YMqn
jpV1tMvaCorvxrO46lACHR1bnOFI0pg/oNVVdN6j7XfyVHXhqcY4Ya8EVxpfGPj4
d9vMoQbvQaF8wRDNb46xw5i3b7VDOOisIcfKH0Z/FaNUfLHw3CicMxDAjUOKmPJD
TV9cQppjoOYGDgkFg9+qjmxCHNsjstblKKzg5v1Uj/4wDNbML+6K0t7CVTd3U8P+
tWLh8JVzoOzgmDmAlR7a2Ge3hwkOJmRzM+IhpPln4TsvtJuzmJL85jfcgOpvLnab
qnem9gLfE6c3Lcgl4UZ8LkHUJPQccz858o/P7wA3kBrnADgCGgEM3AdjNAHRBZBK
g+4UgPeE2AMAhMFAUTB4M4NUWXBSwKr9V5FAQBsAIgcbkmGnD6BDQ1WLg9JMFC1f
6vpARr819K8UWg7FXkO7RYm5FA6vDXgrE18yCgGBDid8rPNxENlBuvvXzIK17dCx
2OL43nr5N+a9reNuc3ni4V+W87fMgbAvi9ZKO8TecgU3/QFhJUMmZs7Y3479d+a+
gHOAUAUA7gEIz4AHvl37by9+m/vf9QhAIwJFOixbeVv+gT81gCgDoSiAygT7ugGC
BLBRvS3q71ABu9pfSAsPnr2wAoDohcA0OGSxD5O/6BJgsodCbj/x8hBwJ6oZkNIJ
izYBmQeoAABrcBHEUIfTIKCXyslCvzAJn1yHwAiC0AJ0LVWDArvzqsdhXowGwAMA
ZfyhBATDE6EoFPf0fN3s71Nn4sQB0stXqUCQGB+g/7LT3pwYhgIBtDpwGXl/ST5y
B7eEAd3qAB2FeyFexOZgYQMwG4ykB9fIP5TGDnADASIAxWKDGgGADMYQAzGIAA==
```
%%

View File

@@ -25,5 +25,6 @@
"file-recovery": true,
"publish": false,
"sync": false,
"canvas": true
"canvas": true,
"bookmarks": true
}

View File

@@ -13,7 +13,7 @@
"note-composer",
"command-palette",
"editor-status",
"starred",
"bookmarks",
"markdown-importer",
"zk-prefixer",
"outline",

View File

@@ -8,18 +8,29 @@
"type": "tabs",
"children": [
{
"id": "1eb42644e92dcb17",
"id": "938ad38d86b932c5",
"type": "leaf",
"state": {
"type": "markdown",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md",
"file": "TC/Wykład/7..md",
"mode": "source",
"source": false
}
}
},
{
"id": "455e8a63d7cbabc4",
"type": "leaf",
"state": {
"type": "release-notes",
"state": {
"currentVersion": "1.2.8"
}
}
}
]
],
"currentTab": 1
}
],
"direction": "vertical"
@@ -64,6 +75,14 @@
"type": "starred",
"state": {}
}
},
{
"id": "562379ddd83ebec1",
"type": "leaf",
"state": {
"type": "bookmarks",
"state": {}
}
}
]
}
@@ -85,7 +104,7 @@
"state": {
"type": "backlink",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md",
"file": "TC/Wykład/7..md",
"collapseAll": false,
"extraContext": false,
"sortOrder": "alphabetical",
@@ -102,7 +121,7 @@
"state": {
"type": "outgoing-link",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md",
"file": "TC/Wykład/7..md",
"linksCollapsed": false,
"unlinkedCollapsed": true
}
@@ -125,7 +144,7 @@
"state": {
"type": "outline",
"state": {
"file": "AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md"
"file": "TC/Wykład/7..md"
}
}
},
@@ -206,42 +225,41 @@
"audio-recorder:Start/stop recording": false,
"3d-graph:3D Graph": false,
"juggl:Juggl global graph": false,
"obsidian-excalidraw-plugin:Create new drawing": false,
"breadcrumbs:Breadcrumbs Visualisation": false
"obsidian-excalidraw-plugin:Create new drawing": false
}
},
"active": "1eb42644e92dcb17",
"active": "455e8a63d7cbabc4",
"lastOpenFiles": [
"AMiAL/Ćwiczenia/2 SEM/20230303081617.md",
"AMiAL/AMiAL.md",
"EiM/EiM.md",
"TC/Wykład/8. Przerzutniki.md",
"TC/Wykład/7..md",
"TC/Wykład/3. ?.md",
"TC/Ćwiczenia/aaa.md",
"TC/Ćwiczenia/Ćwiczenia.md",
"TC/TC.md",
"EiM/Ćwiczenia/Analiza stałoprądowa.md",
"!Załączniki/Analiza stałoprądowa 2023-05-09 13.50.06.excalidraw.md",
"AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 1.md",
"AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 2.md",
"AMiAL/!Materiały/calki_1.pdf",
"AMiAL/AMiAL.md",
"AiSD/AiSD.md",
"Elektrotechnika/Ćwiczenia/20230428101941.md",
"!Załączniki/20230428101941 2023-04-28 10.39.09.excalidraw.md",
"!Załączniki/20230428101941 2023-04-28 10.22.19.excalidraw.md",
"AMiAL/Ćwiczenia/2 SEM/20230303081617.md",
"EiM/EiM.md",
"TC/Ćwiczenia/Untitled.md",
"TC/Wykład/0. Wstęp.md",
"TC/Wykład/Wykład.md",
"TC/Ćwiczenia/1. Algebra Boola.md",
"TC/Ćwiczenia/aaa.md",
"TC/Ćwiczenia/2. Realizacja układów na stykach.md",
"TC/Ćwiczenia/3. Układy iteracyjne.md",
"TC/Ćwiczenia/Ćwiczenia.md",
"TC/Laboratorium/Laboratorium.md",
"TC/Wykład/8. Przerzutniki.md",
"!Załączniki/2. Charakterystyki 2023-04-25 13.49.32.excalidraw.md",
"EiM/Ćwiczenia/2. Charakterystyki.md",
"TIiK/Ćwiczenia/1. Logarytmy.md",
"TIiK/Wykład/4..md",
"AiSD/Ćwiczenia/2. Ćwiczenia.md",
"AiSD/Ćwiczenia/3. Złożoność i czynnik sumacyjny.md",
"AiSD/AiSD.md",
"AMiAL/Ćwiczenia/Zadania/Całki/Zadanie 5.md",
"TC/Wykład/6. Układy Sekwencyjne.md",
"EiM/Wykłady/1. Wstęp.md",
"TIiK/Wykład/2..md",
"TIiK/Wykład/3. Łańcuchy markowa.md",
"!Załączniki/Recording 20230418135018.webm",
"!Załączniki/Recording 20230418134959.webm",
"EiM/Ćwiczenia",
"AMiAL/!Materiały/calki_1.pdf",
"AMiAL/!Materiały/w0_intro.pdf",
"!Załączniki/Excalidraw/Scripts/Downloaded/Normalize Selected Arrows.svg",
"!Załączniki/Excalidraw/Scripts/Downloaded/Fixed inner distance.svg",

View File

@@ -56,9 +56,22 @@ $$
\begin{gather}
\int\frac{x^{2}-x-2}{\sqrt[3]{x^{2}}}dx=\int\frac{x^{2}-x-2}{x^{\frac{2}{3}}}dx=\int \frac{x^{2}}{x^{\frac{2}{3}}}dx-\int \frac{x}{x^{\frac{2}{3}}}dx-\int \frac{2}{x^{\frac{2}{3}}}dx=\\
=
=\int x^{\frac{4}{3}}dx- \int x^{\frac{1}{3}}dx - \int \frac{2}{x^{\frac{2}{3}}}dx= \frac{3x^{\frac{7}{3}}}{7}- \frac{3x^{\frac{4}{3}}}{4}-2\cdot3x^\frac{1}{3}+C=\\
=\frac{3x^{2}\sqrt[3]{x}}{7} - \frac{3x\sqrt[3]{x}}{4} -6 \sqrt[3]{x}+C
\end{gather}
$$
## 15.
$$\begin{gather}
\int \frac{(x+\sqrt{x})(\sqrt{x}+\sqrt[4]{x})(\sqrt{x}-\sqrt[4]{x})}{x}dx=\int \frac{(x+\sqrt{x})(x - \sqrt{x})}{x}dx= \\
= \int\frac{x^{2}-x}{x}dx=\int x-1dx = \frac{x^{2}}{2}-x+C
\end{gather}$$
## 16.
$$
\int\frac{\sqrt{x+2\sqrt{x}+1}}{x}dx=\int \frac{x^{\frac{1}{2}}+1}{x}dx= \int \frac{x^{\frac{1}{2}}}{x}+\int \frac{1}{x}dx=2x^{\frac{1}{2}}+\ln|x|+C
$$
## 17.
$$\int \frac{\sqrt[3]{x}-1}{\sqrt[6]{x}-1}dx=\int\frac{x^{\frac{1}{3}}-1}{x^{\frac{1}{6}}-1}dx=\int\frac{x^{\frac{1}{3}}}{x^{\frac{1}{6}}-1}-\int\frac{1}{x^{\frac{1}{6}}-1}=$$
## 18.
$$\int (4^{x}+2^{-x})dx=\frac{4x}{\ln 4}+ \int (\frac{1}{2})^{x}dx=\frac{4^{x}}{\ln 4}+\frac{(\frac{1}{2})^{x}}{\ln \frac{1}{2}}+c$$

View File

@@ -0,0 +1,3 @@
# Obliczyć całki.
## 1.
$$\int x \cos x dx=\sin x +C$$

View File

@@ -0,0 +1,2 @@
![[Analiza stałoprądowa 2023-05-09 13.50.06.excalidraw]]

View File

@@ -0,0 +1,10 @@
| |S|jω|
|-|-|-|
|R|R|R|
|L|Z$_L$=sL|Z$_L$=jωL|
![[20230428101941 2023-04-28 10.22.19.excalidraw]]
![[20230428101941 2023-04-28 10.39.09.excalidraw]]