Files

38 lines
1.0 KiB
Markdown
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Zbadać monotoniczność podanych ciągów
## (1)
$$\begin{aligned}
a_{n}&=2n^{2}+4n \\
a_{n+1}&= 2(n+1)^{2}+4(n+1)\\
a_{n+1}&= 2n^{2}+4n+2+4n+4 \\
a_{n+1}&= 2n^{2}+8n+6 \\
a_{n+1}-a_{n}&= 2n^{2}+8n+6-(2n^{2}+4n)\\
a_{n+1}-a_{n}&=4n+6
\end{aligned}$$
Ciąg jest monotoniczny, wszystkie jego wyrazy są dodatnie.
## (2)
$$\begin{aligned}
a_n&=n^{2}-8n+15\\
a_{n+1}&=(n+1)^{2} - 8(n+1)+15 \\
a_{n+1}&=n^{2}-6n+8 \\
a_{n+1}-a_{n}&=(n^{2}-6n+8)-(n^{2}-8n +15)\\
a_{n+1}-a_{n}&=2n-7
\end{aligned}$$
Ciąg jest niemonotoniczny, ponieważ znaki się zmieniają w jego trakcie.
## (3)
$$\begin{aligned}
a_{n}&= \tfrac{n-1}{n+3} \\
a_{n+1}&=\tfrac{n+1-1}{n+1+3} \\
a_{n+1}&=\tfrac{n}{n+4}\\
a_{n+1}-a_{n}&=\tfrac{n}{n+4}-\tfrac{n-1}{n+3}\\
a_{n+1}-a_{n}&=\tfrac{n(n+3)}{(n+4)(n+3)}-\tfrac{(n+4)(n-1)}{(n+3)(n+4)} \\
a_{n+1}-a_{n}&=\tfrac{n^{2}+3n}{n^{2}+7n+12}-\tfrac{n^{2}-3n-4}{n^{2}+7n+12}\\
a_{n+1}-a_{n}&=\tfrac{n^{2}+3n-(n^{2}-3n-4)}{n^{2}+7n+12}\\
a_{n+1}-a_{n}&=\tfrac{6n+4}{n^{2}+7n+12}\\
\end{aligned}$$
Ciąg jest monotoniczny; dąży do 0
## (4)
## (5)
## (6)
## (7)