Files
Polsl-Notes/TC/ALGEBRA BOOLE'a.md

19 lines
681 B
Markdown

# Aksjomaty algebry boola
1. $(\bar 0 = 1) \cap (\bar 1 = 0)$
2. $\forall x\in B (x+1=1) \cap (x \cdot 1 = x)$
3. $\forall x\in B (x+0=x) \cap (x \cdot 0 = 0)$
4. $(x + \bar x = 1) \cap (x \cdot \bar x = 0)$
5. $(x+x=x)\cap (x\cdot x = x)$
6. $\bar{\bar x} = x$
7. $\forall x,y \in B\ \ (\overline{x+y}=\bar{x}\cdot \bar{y})\cap (\overline{xy}=\bar{x}+\bar{y})$ prawo de morgana
8. $(x+y = y+x) \cap (x\cdot y = y \cdot x)$
9. $x+(y+z)=(x+y)+z\cap x(yz)=(xy)z$
10. $x(y+z)=xy+xz\cap x+(yz)=x+y \cdot x+z$
# Prawa Pochłaniania
1. $x+xy=x \cap x(x+y)=x$
2. $\forall x,y \in B [x+\bar x y = x+y]\cap[x(\bar x+y)=xy]$
# Prawo Wklejania
1. $(yx+\bar x=y)\cap[(y+x)(y+\bar x)=y]$