Files
Polsl-Notes/AMiAL/Ćwiczenia/Zadania/Różniczki/Zadanie 1.md

1.3 KiB

Korzystając z różniczki wyznaczyć przybliżoną wartość wyrażenia.

1

\sqrt{2.01^{4}+9}=\left.5+df\right|_{(x_{0})} x_0=2 \Delta x = 0.01 f(x)=\sqrt{x^4+9} f'(x)=\frac{1}{2\sqrt{x^{4}+9}}\cdot4x^{3} f'(x_{0})=3.2 \left.df\right|_{x_{0}}=3.2\cdot0.01=0.032 \sqrt{2.01^{4}+9}\approx5.032

2

(0.98^{2}+2)^3=27+\left.df\right|_{(x_{0})} x_{0}=1 \Delta x=-0.02 f(x)=(x^{2}+2)^3 f'(x)=3(x^{2}+2)^{2}\cdot2x f'(x_{0})=54 \left.df\right|_{x_{0}}=54\cdot(-0.02)=-1.08 (0.98^{2}+2)^{3}=27+(-1.08)=25.92

3

\cfrac{4\cdot2.03+1}{2.03^{2}-2}=\frac{9}{2}+\left.df\right|_{(x_{0})} x_{0}=2 \Updelta x=0.03 f(x)=\cfrac{4x+1}{x^{2}-2} f'(x)=\cfrac{1}{\left(x^{2}-2\right)^{2}}\cdot\left(4\cdot(x^{2}-2)-(4x+1)\cdot2x\right) f'(x_{0})=-\cfrac{28}{4}=-7 \left.df\right|_{(x_{0})}=-7\cdot0.03=-0.21 \cfrac{4\cdot2.03+1}{2.03^{2}-2}=4.5+(-0.21)=4.29

4

\ln(1+\ln 1.01)=0+\left.df\right|_{x_{0}} f(x)=\ln(1+\ln x) x_{0}=1 \Delta x=0.01 f'(x)=\cfrac{1}{1+\ln x}\cdot\cfrac{1}{x} f'(x_{0})=1 \left.df\right|_{x_{0}}=0.01 \ln(1+\ln 1.01)=0+0.01=0.01

5

0.99\cdot\cos(0.99\pi)=-1+\left.df\right|_{x_{0}} f(x)=x\cdot\cos(x\pi) x_0=1 \Delta x = -0.01 f'(x)=cos(x\pi)+x\cdot(-\sin(\pi x)\cdot\pi) f'(x_{0})=\cos(\pi)-\pi(\sin\pi)=-1 \left.df\right|_{x_{0}}=-1\cdot(-0.01)=0.01 0.99\cdot\cos(0.99\pi)=-0.99