Files
Polsl-Notes/TC/Ściągi/ALGEBRA BOOLOWSKA.md

852 B

Aksjomaty algebry boola

  1. (\bar 0 = 1) \cap (\bar 1 = 0)
  2. (x+1=1) \cap (x \cdot 1 = x) - 1 elementem neutralnym dla iloczynu
  3. (x+0=x) \cap (x \cdot 0 = 0) - 0 elementem neutralnym dla sumy
  4. (x + \bar x = 1) \cap (x \cdot \bar x = 0) - Prawo negacji
  5. (x+x=x)\cap (x\cdot x = x) - Prawo idempotentności
  6. \bar{\bar x} = x
  7. (\overline{x+y}=\bar{x}\cdot \bar{y})\cap (\overline{xy}=\bar{x}+\bar{y}) - Prawo de morgana
  8. (x+y = y+x) \cap (x\cdot y = y \cdot x) - Prawo przemienności iloczynu/sumy
  9. x+(y+z)=(x+y)+z\cap x(yz)=(xy)z
  10. x(y+z)=xy+xz\cap x+(yz)=x+y \cdot x+z - Rozdzielność iloczynu względem sumy

Prawa Pochłaniania

  1. x+xy=x \cap x(x+y)=x
  2. \forall x,y \in B [x+\bar x y = x+y]\cap[x(\bar x+y)=xy]

Prawo Wklejania

  1. (yx+\bar x=y)\cap[(y+x)(y+\bar x)=y]

%%za a+a=a^2 ban na życie%%