vault backup: 2023-02-19 20:44:45
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
# Na podstawie definicji obliczyć pochodną funkcji f w podanym punkcie x_0.
|
||||
# Na podstawie definicji obliczyć pochodną funkcji f w podanym punkcie $x_0$.
|
||||
## 1
|
||||
$f(x)=2x-x^{2},gdzie\ x_0=1$
|
||||
$f'(x)=2-2x$
|
||||
@@ -22,9 +22,45 @@ $f'(x)=-\frac{1}{2\sqrt{x+2}}$
|
||||
$f'(x_{0})=-\frac{1}{4}$
|
||||
## 6
|
||||
$f(x)=\sqrt{1+2x},\ x_{0}=4$
|
||||
$f'(x)=\frac{1}{2\sqrt{1+2x}}$
|
||||
$f'(x_{0})=\frac{1}{6}$
|
||||
$f(x)=(1+2x)^{\frac{1}{2}}$
|
||||
$f'(x)=\cfrac{\frac{1}{2\sqrt{1+2x}}}{2}$
|
||||
$f'(x_{0})=\frac{1}{3}$
|
||||
## 7
|
||||
$f(x)=3+2\sqrt{4x-1},\ x_{0}=2\frac{1}{2}$
|
||||
$f'(x)=\frac{2}{2\sqrt{4x-1}}$
|
||||
$f'(x_{0})=\frac{1}{2}$
|
||||
$f'(x)=2\cdot \frac{1}{2\sqrt{4x-1}}\cdot 4$
|
||||
$f'(x_{0})=\frac{4}{3}$
|
||||
## 8
|
||||
$f(x)=\frac{1}{x^{2}},\ x_{0}=1$
|
||||
$f'(x)=-\frac{2}{x^3}$
|
||||
$f'(x_{0})=-2$
|
||||
## 9
|
||||
$f(x)=\frac{2}{x^{3}},\ x_{0}=-1$
|
||||
$f(x)=2(x^{-3})$
|
||||
$f'(x)=-\frac{6}{x^{4}}$
|
||||
$f'(x_{0})=-6$
|
||||
## 10
|
||||
$f(x)=\sqrt{x^{2}-1},\ x_{0}=-3$
|
||||
$f'(x)=\cfrac{1}{2\sqrt{x^{2}-1}} \cdot 2x$
|
||||
$f'(x_{0})=\frac{-6}{4\sqrt{2}}=\frac{-3}{2\sqrt{2}}$
|
||||
## 11
|
||||
$f(x)=\sqrt{2x^{2}+1},\ x_{0}=2$
|
||||
$f'(x)=\cfrac{1}{2\sqrt{2x^{2}+1}} \cdot 4x$
|
||||
$f'(x_{0})=\frac{4}{3}$
|
||||
## 12
|
||||
$f(x)=\sin{x},\ x_{0}=\frac{\pi}{2}$
|
||||
$f'(x)=\cos x$
|
||||
$f'(x_{0})=0$
|
||||
## 13
|
||||
$f(x)=\cos{x},\ x_{0}=\frac{\pi}{2}$
|
||||
$f'(x)=-\sin x$
|
||||
$f'(x_{0})=-1$
|
||||
## 14
|
||||
$f(x)=\sin{x^2},\ x_{0}=0$
|
||||
$f'(x)=\cos x^{2}\cdot 2x$
|
||||
$f'(x_{0})=0$
|
||||
## 15
|
||||
$f(x)=\sin\sqrt{x},\ x_{0}=0$
|
||||
$f'(x)=\cos\sqrt{x}\cdot\frac{1}{2\sqrt{x}}$
|
||||
$f'(x_{0})=1\cdot\frac{1}{0}=brak\ rozwiązania$
|
||||
|
||||
|
||||
|
||||
19
AMiAL/Ćwiczenia/Zadania/Pochodne/Zadanie 2.md
Normal file
19
AMiAL/Ćwiczenia/Zadania/Pochodne/Zadanie 2.md
Normal file
@@ -0,0 +1,19 @@
|
||||
# Wyznaczyć pochodne podanych funkcji.
|
||||
## 1
|
||||
$y=(3-x^{4})^{2}$
|
||||
$y'=2(3-x^{4})\cdot(-4x^{3})=(6-2x^{4})\cdot(-4x^{3})=-24x^{3}+8x^{7}$
|
||||
## 2
|
||||
$y=1-\frac{4}{x^6}+\frac{3}{x^7}$
|
||||
$y'=-4\cdot-6x^{-7}+3\cdot-7x^{-8}=\frac{24}{x^{7}}-\frac{21}{x^{8}}$
|
||||
## 3
|
||||
$y=\cfrac{x^{2}+4}{x}$
|
||||
$y'=\cfrac{1}{x^{2}}\cdot\left(2x^{2}-(x^{2}+4)\right)=\cfrac{x^{2}-4}{x^{2}}=1-\cfrac{4}{x^2}$
|
||||
## 4
|
||||
$y=\cfrac{x-3}{x^{2}}$
|
||||
$y'=\cfrac{1}{x^{4}}\cdot\left(x^{2}-2x^{2}+6x\right)=\cfrac{6x-x^{2}}{x^{4}}=\cfrac{6-x}{x^3}$
|
||||
## 5
|
||||
$y$
|
||||
## 7
|
||||
$y=\cfrac{x^{5}+x^{3}+x}{\sqrt{x}}$
|
||||
$y'=\cfrac{1}{x}\left((x^{5}+x^{3}+x)\cdot\frac{1}{2\sqrt{x}}-(5x^{4}+3x^2+1)\cdot\sqrt{x}\right)$
|
||||
|
||||
46
AMiAL/Ćwiczenia/Zadania/Różniczki/Zadanie 1.md
Normal file
46
AMiAL/Ćwiczenia/Zadania/Różniczki/Zadanie 1.md
Normal file
@@ -0,0 +1,46 @@
|
||||
# Korzystając z różniczki wyznaczyć przybliżoną wartość wyrażenia.
|
||||
## 1
|
||||
$\sqrt{2.01^{4}+9}=\left.5+df\right|_{(x_{0})}$
|
||||
$x_0=2$
|
||||
$\Delta x = 0.01$
|
||||
$f(x)=\sqrt{x^4+9}$
|
||||
$f'(x)=\frac{1}{2\sqrt{x^{4}+9}}\cdot4x^{3}$
|
||||
$f'(x_{0})=3.2$
|
||||
$\left.df\right|_{x_{0}}=3.2\cdot0.01=0.032$
|
||||
$\sqrt{2.01^{4}+9}\approx5.032$
|
||||
## 2
|
||||
$(0.98^{2}+2)^3=27+\left.df\right|_{(x_{0})}$
|
||||
$x_{0}=1$
|
||||
$\Delta x=-0.02$
|
||||
$f(x)=(x^{2}+2)^3$
|
||||
$f'(x)=3(x^{2}+2)^{2}\cdot2x$
|
||||
$f'(x_{0})=54$
|
||||
$\left.df\right|_{x_{0}}=54\cdot(-0.02)=-1.08$
|
||||
$(0.98^{2}+2)^{3}=27+(-1.08)=25.92$
|
||||
## 3
|
||||
$\cfrac{4\cdot2.03+1}{2.03^{2}-2}=\frac{9}{2}+\left.df\right|_{(x_{0})}$
|
||||
$x_{0}=2$
|
||||
$\Updelta x=0.03$
|
||||
$f(x)=\cfrac{4x+1}{x^{2}-2}$
|
||||
$f'(x)=\cfrac{1}{\left(x^{2}-2\right)^{2}}\cdot\left(4\cdot(x^{2}-2)-(4x+1)\cdot2x\right)$
|
||||
$f'(x_{0})=-\cfrac{28}{4}=-7$
|
||||
$\left.df\right|_{(x_{0})}=-7\cdot0.03=-0.21$
|
||||
$\cfrac{4\cdot2.03+1}{2.03^{2}-2}=4.5+(-0.21)=4.29$
|
||||
## 4
|
||||
$\ln(1+\ln 1.01)=0+\left.df\right|_{x_{0}}$
|
||||
$f(x)=\ln(1+\ln x)$
|
||||
$x_{0}=1$
|
||||
$\Delta x=0.01$
|
||||
$f'(x)=\cfrac{1}{1+\ln x}\cdot\cfrac{1}{x}$
|
||||
$f'(x_{0})=1$
|
||||
$\left.df\right|_{x_{0}}=0.01$
|
||||
$\ln(1+\ln 1.01)=0+0.01=0.01$
|
||||
## 5
|
||||
$0.99\cdot\cos(0.99\pi)=-1+\left.df\right|_{x_{0}}$
|
||||
$f(x)=x\cdot\cos(x\pi)$
|
||||
$x_0=1$
|
||||
$\Delta x = -0.01$
|
||||
$f'(x)=cos(x\pi)+x\cdot(-\sin(\pi x)\cdot\pi)$
|
||||
$f'(x_{0})=\cos(\pi)-\pi(\sin\pi)=-1$
|
||||
$\left.df\right|_{x_{0}}=-1\cdot(-0.01)=0.01$
|
||||
$0.99\cdot\cos(0.99\pi)=-0.99$
|
||||
Reference in New Issue
Block a user