vault backup: 2023-02-19 20:44:45

This commit is contained in:
2023-02-19 20:44:26 +01:00
parent 2c52da25b3
commit 6b729e759e
7 changed files with 320 additions and 28 deletions

View File

@@ -1,4 +1,4 @@
# Na podstawie definicji obliczyć pochodną funkcji f w podanym punkcie x_0.
# Na podstawie definicji obliczyć pochodną funkcji f w podanym punkcie $x_0$.
## 1
$f(x)=2x-x^{2},gdzie\ x_0=1$
$f'(x)=2-2x$
@@ -22,9 +22,45 @@ $f'(x)=-\frac{1}{2\sqrt{x+2}}$
$f'(x_{0})=-\frac{1}{4}$
## 6
$f(x)=\sqrt{1+2x},\ x_{0}=4$
$f'(x)=\frac{1}{2\sqrt{1+2x}}$
$f'(x_{0})=\frac{1}{6}$
$f(x)=(1+2x)^{\frac{1}{2}}$
$f'(x)=\cfrac{\frac{1}{2\sqrt{1+2x}}}{2}$
$f'(x_{0})=\frac{1}{3}$
## 7
$f(x)=3+2\sqrt{4x-1},\ x_{0}=2\frac{1}{2}$
$f'(x)=\frac{2}{2\sqrt{4x-1}}$
$f'(x_{0})=\frac{1}{2}$
$f'(x)=2\cdot \frac{1}{2\sqrt{4x-1}}\cdot 4$
$f'(x_{0})=\frac{4}{3}$
## 8
$f(x)=\frac{1}{x^{2}},\ x_{0}=1$
$f'(x)=-\frac{2}{x^3}$
$f'(x_{0})=-2$
## 9
$f(x)=\frac{2}{x^{3}},\ x_{0}=-1$
$f(x)=2(x^{-3})$
$f'(x)=-\frac{6}{x^{4}}$
$f'(x_{0})=-6$
## 10
$f(x)=\sqrt{x^{2}-1},\ x_{0}=-3$
$f'(x)=\cfrac{1}{2\sqrt{x^{2}-1}} \cdot 2x$
$f'(x_{0})=\frac{-6}{4\sqrt{2}}=\frac{-3}{2\sqrt{2}}$
## 11
$f(x)=\sqrt{2x^{2}+1},\ x_{0}=2$
$f'(x)=\cfrac{1}{2\sqrt{2x^{2}+1}} \cdot 4x$
$f'(x_{0})=\frac{4}{3}$
## 12
$f(x)=\sin{x},\ x_{0}=\frac{\pi}{2}$
$f'(x)=\cos x$
$f'(x_{0})=0$
## 13
$f(x)=\cos{x},\ x_{0}=\frac{\pi}{2}$
$f'(x)=-\sin x$
$f'(x_{0})=-1$
## 14
$f(x)=\sin{x^2},\ x_{0}=0$
$f'(x)=\cos x^{2}\cdot 2x$
$f'(x_{0})=0$
## 15
$f(x)=\sin\sqrt{x},\ x_{0}=0$
$f'(x)=\cos\sqrt{x}\cdot\frac{1}{2\sqrt{x}}$
$f'(x_{0})=1\cdot\frac{1}{0}=brak\ rozwiązania$

View File

@@ -0,0 +1,19 @@
# Wyznaczyć pochodne podanych funkcji.
## 1
$y=(3-x^{4})^{2}$
$y'=2(3-x^{4})\cdot(-4x^{3})=(6-2x^{4})\cdot(-4x^{3})=-24x^{3}+8x^{7}$
## 2
$y=1-\frac{4}{x^6}+\frac{3}{x^7}$
$y'=-4\cdot-6x^{-7}+3\cdot-7x^{-8}=\frac{24}{x^{7}}-\frac{21}{x^{8}}$
## 3
$y=\cfrac{x^{2}+4}{x}$
$y'=\cfrac{1}{x^{2}}\cdot\left(2x^{2}-(x^{2}+4)\right)=\cfrac{x^{2}-4}{x^{2}}=1-\cfrac{4}{x^2}$
## 4
$y=\cfrac{x-3}{x^{2}}$
$y'=\cfrac{1}{x^{4}}\cdot\left(x^{2}-2x^{2}+6x\right)=\cfrac{6x-x^{2}}{x^{4}}=\cfrac{6-x}{x^3}$
## 5
$y$
## 7
$y=\cfrac{x^{5}+x^{3}+x}{\sqrt{x}}$
$y'=\cfrac{1}{x}\left((x^{5}+x^{3}+x)\cdot\frac{1}{2\sqrt{x}}-(5x^{4}+3x^2+1)\cdot\sqrt{x}\right)$