vault backup: 2023-01-13 12:52:56
This commit is contained in:
53
.obsidian/workspace.json
vendored
53
.obsidian/workspace.json
vendored
@@ -10,16 +10,39 @@
|
|||||||
{
|
{
|
||||||
"id": "4b6b50adf0c07df4",
|
"id": "4b6b50adf0c07df4",
|
||||||
"type": "leaf",
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "excalidraw",
|
||||||
|
"state": {
|
||||||
|
"file": "!Załączniki/20221125102535 2022-11-25 10.39.55.excalidraw.md"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "4ab22e07819c9f24",
|
||||||
|
"type": "leaf",
|
||||||
"state": {
|
"state": {
|
||||||
"type": "markdown",
|
"type": "markdown",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "EP/EP.md",
|
"file": "AMiAL/AMiAL.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "c74eadd8bb2a07fb",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "AMiAL/Ćwiczenia/Zadania/Untitled.md",
|
||||||
"mode": "source",
|
"mode": "source",
|
||||||
"source": false
|
"source": false
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
]
|
],
|
||||||
|
"currentTab": 2
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"direction": "vertical"
|
"direction": "vertical"
|
||||||
@@ -85,7 +108,7 @@
|
|||||||
"state": {
|
"state": {
|
||||||
"type": "backlink",
|
"type": "backlink",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "EP/EP.md",
|
"file": "AMiAL/Ćwiczenia/Zadania/Untitled.md",
|
||||||
"collapseAll": false,
|
"collapseAll": false,
|
||||||
"extraContext": false,
|
"extraContext": false,
|
||||||
"sortOrder": "alphabetical",
|
"sortOrder": "alphabetical",
|
||||||
@@ -102,7 +125,7 @@
|
|||||||
"state": {
|
"state": {
|
||||||
"type": "outgoing-link",
|
"type": "outgoing-link",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "EP/EP.md",
|
"file": "AMiAL/Ćwiczenia/Zadania/Untitled.md",
|
||||||
"linksCollapsed": false,
|
"linksCollapsed": false,
|
||||||
"unlinkedCollapsed": true
|
"unlinkedCollapsed": true
|
||||||
}
|
}
|
||||||
@@ -125,7 +148,7 @@
|
|||||||
"state": {
|
"state": {
|
||||||
"type": "outline",
|
"type": "outline",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "EP/EP.md"
|
"file": "AMiAL/Ćwiczenia/Zadania/Untitled.md"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
@@ -184,17 +207,17 @@
|
|||||||
"breadcrumbs:Breadcrumbs Visualisation": false
|
"breadcrumbs:Breadcrumbs Visualisation": false
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"active": "4b6b50adf0c07df4",
|
"active": "c74eadd8bb2a07fb",
|
||||||
"lastOpenFiles": [
|
"lastOpenFiles": [
|
||||||
|
"AMiAL/AMiAL.md",
|
||||||
|
"Elektrotechnika/Ćwiczenia/20221125102535.md",
|
||||||
|
"!Załączniki/20221209102007 2022-12-09 10.20.56.excalidraw.md",
|
||||||
|
"Elektrotechnika/Ćwiczenia/20221209102007.md",
|
||||||
|
"Elektrotechnika/Ćwiczenia/20221123102116.md",
|
||||||
|
"Elektrotechnika/Ćwiczenia/20221028102800.md",
|
||||||
|
"Elektrotechnika/Ćwiczenia/20221014103322.md",
|
||||||
|
"EP/EP.md",
|
||||||
"TI/TI.md",
|
"TI/TI.md",
|
||||||
"PI/PI.md",
|
"PI/PI.md"
|
||||||
"PI/Ćwiczenia/3. Projektowanie rozkazów.md",
|
|
||||||
"PI/Ćwiczenia/2.Gramatyki.md",
|
|
||||||
"PI/Ćwiczenia/1.Rekurencja.md",
|
|
||||||
"PI/Ćwiczenia/Ćwiczenia.md",
|
|
||||||
"PI/Ćwiczenia/20221121122351.md",
|
|
||||||
"Myśli nieuczesane.md",
|
|
||||||
"!Załączniki/3. Projektowanie rozkazów 2022-12-19 12.27.09.excalidraw.md",
|
|
||||||
"PI/Wykłady/1 SEM/20221014134528.md"
|
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
15
AMiAL/Ćwiczenia/Zadania/Untitled.md
Normal file
15
AMiAL/Ćwiczenia/Zadania/Untitled.md
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
# Untitled
|
||||||
|
$f(x)=xe^{-2x}$
|
||||||
|
$D_{f}=\mathbb{R}$
|
||||||
|
$f'(x)=e^{-2x}+x\cdot e^{-2x}\cdot(-2)=e^{-2x}(1-2x)$
|
||||||
|
$D_{f'}=\mathbb{R}$
|
||||||
|
|
||||||
|
$f'(x)\leqslant0$
|
||||||
|
$1-2x\leqslant0$
|
||||||
|
$x\geqslant\frac{1}{2}$
|
||||||
|
$f$ jest malejąca w przedziale (½, ∞)
|
||||||
|
$f''(x)=e^{-2x}\cdot(-2)\cdot(1-2x)+e^{-2x}\cdot(-2)$
|
||||||
|
$D_{f''}=\mathbb{R}$
|
||||||
|
$f''(x)=e^{-2x}\left[(-2)\cdot(1-2x)+(-2)\right]=e^{-2x}(4x-4)=4e^{-2x}(x-1)$
|
||||||
|
$f$ jest wypukła w (1,∞)
|
||||||
|
f jest malejąca i wypukła w przedziale (1,∞)
|
||||||
Reference in New Issue
Block a user