vault backup: 2023-02-14 16:32:50
This commit is contained in:
BIN
AMiAL/!Materiały/pochodna.pdf
Normal file
BIN
AMiAL/!Materiały/pochodna.pdf
Normal file
Binary file not shown.
30
AMiAL/Ćwiczenia/Zadania/Pochodne/Zadanie 1.md
Normal file
30
AMiAL/Ćwiczenia/Zadania/Pochodne/Zadanie 1.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# Na podstawie definicji obliczyć pochodną funkcji f w podanym punkcie x_0.
|
||||
## 1
|
||||
$f(x)=2x-x^{2},gdzie\ x_0=1$
|
||||
$f'(x)=2-2x$
|
||||
$f'(x_{0})=0$
|
||||
## 2
|
||||
$f(x)=x^{2}-7x,gdzie\ x_{0}=0$
|
||||
$f'(x)=2x-7$
|
||||
$f'(x_{0})=-7$
|
||||
## 3
|
||||
$f(x)=x^{3},x_{0}=1$
|
||||
$f'(x)=3x^2$
|
||||
$f'(x_{0})=3$
|
||||
## 4
|
||||
$f(x)=-2x^{3}+x, x_{0}=-1$
|
||||
$f'(x)=-6x^{2}+1$
|
||||
$f'(x_{0})=-5$
|
||||
## 5
|
||||
$f(x)=-\sqrt{x+2},\ x_{0}=2$
|
||||
$f(x)=-(x+2)^{\frac{1}{2}},\ x_{0}=2$
|
||||
$f'(x)=-\frac{1}{2\sqrt{x+2}}$
|
||||
$f'(x_{0})=-\frac{1}{4}$
|
||||
## 6
|
||||
$f(x)=\sqrt{1+2x},\ x_{0}=4$
|
||||
$f'(x)=\frac{1}{2\sqrt{1+2x}}$
|
||||
$f'(x_{0})=\frac{1}{6}$
|
||||
## 7
|
||||
$f(x)=3+2\sqrt{4x-1},\ x_{0}=2\frac{1}{2}$
|
||||
$f'(x)=\frac{2}{2\sqrt{4x-1}}$
|
||||
$f'(x_{0})=\frac{1}{2}$
|
||||
Reference in New Issue
Block a user