vault backup: 2023-02-14 16:32:50

This commit is contained in:
2023-02-14 16:32:51 +01:00
parent 42353e5bdc
commit 2c52da25b3
4 changed files with 243 additions and 11 deletions

View File

@@ -0,0 +1,30 @@
# Na podstawie definicji obliczyć pochodną funkcji f w podanym punkcie x_0.
## 1
$f(x)=2x-x^{2},gdzie\ x_0=1$
$f'(x)=2-2x$
$f'(x_{0})=0$
## 2
$f(x)=x^{2}-7x,gdzie\ x_{0}=0$
$f'(x)=2x-7$
$f'(x_{0})=-7$
## 3
$f(x)=x^{3},x_{0}=1$
$f'(x)=3x^2$
$f'(x_{0})=3$
## 4
$f(x)=-2x^{3}+x, x_{0}=-1$
$f'(x)=-6x^{2}+1$
$f'(x_{0})=-5$
## 5
$f(x)=-\sqrt{x+2},\ x_{0}=2$
$f(x)=-(x+2)^{\frac{1}{2}},\ x_{0}=2$
$f'(x)=-\frac{1}{2\sqrt{x+2}}$
$f'(x_{0})=-\frac{1}{4}$
## 6
$f(x)=\sqrt{1+2x},\ x_{0}=4$
$f'(x)=\frac{1}{2\sqrt{1+2x}}$
$f'(x_{0})=\frac{1}{6}$
## 7
$f(x)=3+2\sqrt{4x-1},\ x_{0}=2\frac{1}{2}$
$f'(x)=\frac{2}{2\sqrt{4x-1}}$
$f'(x_{0})=\frac{1}{2}$